Interaction diversity explains the maintenance of phytochemical diversity.

Malus Interaction diversity hypothesis phenolics plant-insect interactions plant-pathogen interactions screening hypothesis secondary metabolites specialized metabolites synergy

Journal

Ecology letters
ISSN: 1461-0248
Titre abrégé: Ecol Lett
Pays: England
ID NLM: 101121949

Informations de publication

Date de publication:
Jun 2021
Historique:
revised: 25 02 2021
received: 17 09 2020
accepted: 26 02 2021
pubmed: 31 3 2021
medline: 21 5 2021
entrez: 30 3 2021
Statut: ppublish

Résumé

The production of complex mixtures of secondary metabolites is a ubiquitous feature of plants. Several evolutionary hypotheses seek to explain how phytochemical diversity is maintained, including the synergy hypothesis, the interaction diversity hypothesis, and the screening hypothesis. We experimentally tested a set of predictions derived from these hypotheses by manipulating the richness and structural diversity of phenolic metabolites in the diets of eight plant consumers. Across 3940 total bioassays, there was clear support for the interaction diversity hypothesis over the synergy or screening hypotheses. The number of consumers affected by a particular phenolic composition increased with increasing richness and structural diversity of compounds. Furthermore, the bioactivity of phenolics was consumer-specific. All compounds tested reduced the performance of at least one consumer, but no compounds affected all consumers. These results show how phytochemical diversity may be maintained in nature by a complex selective landscape exerted by diverse communities of plant consumers.

Identifiants

pubmed: 33783114
doi: 10.1111/ele.13736
doi:

Substances chimiques

Phytochemicals 0

Types de publication

Letter

Langues

eng

Sous-ensembles de citation

IM

Pagination

1205-1214

Subventions

Organisme : Division of Environmental Biology
ID : 1856776
Organisme : National Institute of Food and Agriculture
ID : 2018-07366

Informations de copyright

© 2021 John Wiley & Sons Ltd.

Références

Adler, L.S. (2000). The ecological significance of toxic nectar. Oikos, 91, 409-420.
Appel, H.M. (1993). Phenolics in ecological interactions: the importance of oxidation. J. Chem. Ecol., 19, 1521-1552.
Bartoń, K. (2019). MuMIn: multi-model inference. R package version 1.43.15.
Bates, D., Maechler, M., Bolker, B., Walker, S., Christensen, R., Singmann, H. et al. (2020). lme4: linear mixed-effects models using Eigen and S4. R package version 1.1-23.
Berenbaum, M. & Neal, J.J. (1985). Synergism between myristicin and xanthotoxin, a naturally cooccurring plant toxicant. J. Chem. Ecol., 11, 1349-1358.
Berenbaum, M. & Zangerl, A. (1993). Furanocoumarin metabolism in Papilio polyxenes: biochemistry, genetic variability, and ecological significance. Oecologia, 95, 370-375.
Berenbaum, M.R. & Zangerl, A.R. (1996). Phytochemical diversity: adaptation or random variation? In: Phytochemical Diversity and Redundancy in Ecological Interactions, Recent Advances in Phytochemistry (eds Romeo, J.T., Saunders, J.A., & Barbosa, P.). Springer US, Boston, MA, pp. 1-24.
Bustos-Segura, C., Poelman, E.H., Reichelt, M., Gershenzon, J. & Gols, R. (2017). Intraspecific chemical diversity among neighbouring plants correlates positively with plant size and herbivore load but negatively with herbivore damage. Ecol. Lett., 20, 87-97.
Cao, Y., Charisi, A., Cheng, L.-C., Jiang, T. & Girke, T. (2008). ChemmineR: a compound mining framework for R. Bioinformatics, 24, 1733-1734.
Choi, J., Summers, W. & Paszkowski, U. (2018). Mechanisms underlying establishment of arbuscular mycorrhizal symbioses. Annu. Rev. Phytopathol., 56, 135-160.
Cipollini, M.L. & Levey, D.J. (1997). Secondary metabolites of fleshy vertebrate-dispersed fruits: adaptive hypotheses and implications for seed dispersal. Am. Nat., 150, 346-372.
Diawara, M.M., Trumble, J.T., White, K.K., Carson, W.G. & Martinez, L.A. (1993). Toxicity of linear furanocoumarins to Spodoptera exigua: evidence for antagonistic interactions. J. Chem. Ecol., 19, 2473-2484.
Erb, M. (2018). Plant defenses against herbivory: closing the fitness gap. Trends Plant Sci., 23, 187-194.
Firn, R.D. & Jones, C.G. (2003). Natural products - a simple model to explain chemical diversity. Nat. Prod. Rep., 20, 382-391.
Gershenzon, J., Fontana, A., Burow, M., Wittstock, U. & Degenhardt, J. (2012). Mixtures of plant secondary metabolites: metabolic origins and ecological benefits. In: The Ecology of Plant Secondary Metabolites: From Genes to Global Processes (eds Iason, G.R., Dicke, M. & Hartley, S.E.). Cambridge University Press, Cambridge, pp. 56-77.
Hefner, T., Arend, J., Warzecha, H., Siems, K. & Stöckigt, J. (2002). Arbutin synthase, a novel member of the NRD1β glycosyltransferase family, is a unique multifunctional enzyme converting various natural products and xenobiotics. Bioorg. Med. Chem., 10, 1731-1741.
Hothorn, T., Bretz, F., Westfall, P., Heiberger, R.M., Schuetzenmeister, A. & Scheibe, S. (2020). Multcomp: simultaneous inference in general parametric models. R package version 1.4-13.
Iason, G.R., Dicke, M. & Hartley, S.E. (2012). The Ecology of Plant Secondary Metabolites: From Genes to Global Processes. Cambridge University Press, Cambridge.
Iason, G.R., O'Reilly-Wapstra, J.M., Brewer, M.J., Summers, R.W. & Moore, B.D. (2011). Do multiple herbivores maintain chemical diversity of Scots pine monoterpenes? Philos. Trans. R. Soc. B Biol. Sci., 366, 1337-1345.
Jones, C.G., Firn, R.D., Malcolm, S.B., Chaloner, W.G., Harper, J.L. & Lawton, J.H. (1991). On the evolution of plant secondary chemical diversity. Philos. Trans. R. Soc. Lond. B. Biol. Sci., 333, 273-280.
Kim, S., Thiessen, P.A., Bolton, E.E., Chen, J., Fu, G., Gindulyte, A. et al. (2016). PubChem substance and compound databases. Nucleic Acids Res., 44, D1202-D1213.
Lattanzio, V., Kroon, P., Quideau, S. & Treutter, D. (2009). Plant phenolics - secondary metabolites with diverse functions. In: Recent Advances in Polyphenol Research (eds Daayf, F. & Lattanzio, V.). Wiley-Blackwell, West Sussex, pp. 1-35.
Liu, X., Vrieling, K. & Klinkhamer, P.G.L. (2017). Interactions between plant metabolites affect herbivores: a study with pyrrolizidine alkaloids and chlorogenic acid. Front. Plant Sci., 8, 903.
Liu, Y. & Zhao, H. (2016). Predicting synergistic effects between compounds through their structural similarity and effects on transcriptomes. Bioinformatics, 32, 3782-3789.
Neveu, V., Perez-Jimenez, J., Vos, F., Crespy, V., du Chaffaut, L., Mennen, L. et al. (2010). Phenol-Explorer: an online comprehensive database on polyphenol contents in foods. Database, 2010, bap024. https://doi.org/10.1093/database/bap024
Nevo, O., Razafimandimby, D., Jeffrey, J.A.J., Schulz, S. & Ayasse, M. (2018). Fruit scent as an evolved signal to primate seed dispersal. Sci. Adv., 4, eaat4871.
Nevo, O. & Valenta, K. (2018). The ecology and evolution of fruit odor: implications for primate seed dispersal. Int. J. Primatol., 39, 338-355.
Palmer-Young, E.C., Sadd, B.M. & Adler, L.S. (2017). Evolution of resistance to single and combined floral phytochemicals by a bumble bee parasite. J. Evol. Biol., 30, 300-312.
Pigliucci, M. & Preston, K. (2004). Phenotypic Integration: Studying the Ecology and Evolution of Complex Phenotypes. Oxford University Press, Oxford.
Richards, L.A., Dyer, L.A., Forister, M.L., Smilanich, A.M., Dodson, C.D., Leonard, M.D. et al. (2015). Phytochemical diversity drives plant-insect community diversity. Proc. Natl Acad. Sci., 112, 10973-10978.
Richards, L.A., Glassmire, A.E., Ochsenrider, K.M., Smilanich, A.M., Dodson, C.D., Jeffrey, C.S. et al. (2016). Phytochemical diversity and synergistic effects on herbivores. Phytochem. Rev., 15, 1153-1166.
Ripley, B., Venables, B., Bates, D.M., Hornik, K., Gebhardt, A. & Firth, D. (2020). Support functions and datasets for Venables and Ripley's MASS. R package version 7.3-51.6.
Salazar, D., Jaramillo, A. & Marquis, R.J. (2016). The impact of plant chemical diversity on plant-herbivore interactions at the community level. Oecologia, 181, 1199-1208.
Salazar, D., Lokvam, J., Mesones, I., Vásquez Pilco, M., Ayarza Zuñiga, J.M., de Valpine, P. et al. (2018). Origin and maintenance of chemical diversity in a species-rich tropical tree lineage. Nat. Ecol. Evol., 2, 983-990.
Schiestl, F.P. (2015). Ecology and evolution of floral volatile-mediated information transfer in plants. New Phytol., 206, 571-577.
Speed, M.P., Fenton, A., Jones, M.G., Ruxton, G.D. & Brockhurst, M.A. (2015). Coevolution can explain defensive secondary metabolite diversity in plants. New Phytol., 208, 1251-1263.
Stamp, N.E. & Osier, T.L. (1998). Response of five insect herbivores to multiple allelochemicals under fluctuating temperatures. Entomol. Exp. Appl., 88, 81-96.
Steppuhn, A. & Baldwin, I.T. (2007). Resistance management in a native plant: nicotine prevents herbivores from compensating for plant protease inhibitors. Ecol. Lett., 10, 499-511.
Tallarida, R.J. (2000). Drug Synergism and Dose-Effect Data Analysis. CRC Press, Boca Raton, FL.
Thompson, J.E., Walker, R.P. & Faulkner, D.J. (1985). Screening and bioassays for biologically-active substances from forty marine sponge species from San Diego, California, USA. Mar. Biol., 88, 11-21.
Tilman, D., Reich, P.B., Knops, J., Wedin, D., Mielke, T. & Lehman, C. (2001). Diversity and productivity in a long-term grassland experiment. Science, 294, 843-845.
Volf, M., Segar, S.T., Miller, S.E., Isua, B., Sisol, M., Aubona, G. et al. (2018). Community structure of insect herbivores is driven by conservatism, escalation and divergence of defensive traits in Ficus. Ecol. Lett., 21, 83-92.
Wetzel, W.C. & Whitehead, S.R. (2020). The many dimensions of phytochemical diversity: linking theory to practice. Ecol. Lett., 23, 16-32.
Whitehead, S.R. & Bowers, M.D. (2014). Chemical ecology of fruit defence: synergistic and antagonistic interactions among amides from Piper. Funct. Ecol., 28, 1094-1106.
Whitehead, S.R., Jeffrey, C.S., Leonard, M.D., Dodson, C.D., Dyer, L.A. & Bowers, M.D. (2013). Patterns of secondary metabolite allocation to fruits and seeds in Piper reticulatum. J. Chem. Ecol., 39, 1373-1384.
Whitehead, S.R. & Poveda, K. (2019). Resource allocation trade-offs and the loss of chemical defences during apple domestication. Ann. Bot., 123, 1029-1041.
Wickham, H., Chang, W., Henry, L., Pedersen, T.L., Takahashi, K., Wilke, C. et al. (2020). ggplot2: create elegant data visualisations using the grammar of graphics. R package version 3.3.2.
Wu, K., Zhang, J., Zhang, Q., Zhu, S., Shao, Q., Clark, K.D. et al. (2015). Plant phenolics are detoxified by prophenoloxidase in the insect gut. Sci. Rep., 5, 16823.

Auteurs

Susan R Whitehead (SR)

Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
Department of Entomology, Cornell University, Ithaca, NY, USA.

Ethan Bass (E)

Department of Entomology, Cornell University, Ithaca, NY, USA.
Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA.

Alexsandra Corrigan (A)

Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.

André Kessler (A)

Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA.

Katja Poveda (K)

Department of Entomology, Cornell University, Ithaca, NY, USA.

Articles similaires

A scenario for an evolutionary selection of ageing.

Tristan Roget, Claire Macmurray, Pierre Jolivet et al.
1.00
Aging Selection, Genetic Biological Evolution Animals Fertility
Biological Evolution History, 20th Century Selection, Genetic History, 19th Century Biology
Lakes Salinity Archaea Bacteria Microbiota
Rivers Turkey Biodiversity Environmental Monitoring Animals

Classifications MeSH