Bi-functionalized aminoguanidine-PEGylated periodic mesoporous organosilica nanoparticles: a promising nanocarrier for delivery of Cas9-sgRNA ribonucleoproteine.
Adsorption
CRISPR-Cas Systems
Cell Survival
Cloning, Molecular
Drug Liberation
Dynamic Light Scattering
Gene Editing
/ methods
Guanidines
/ chemistry
Nanoparticles
/ chemistry
Polyethylene Glycols
/ chemistry
Polymers
/ chemistry
RNA, Guide, Kinetoplastida
/ genetics
Ribonucleoproteins
/ chemistry
Silanes
Streptococcus pyogenes
/ genetics
Aminoguanidine Functionalized
Bi-functionalized Periodic Mesoporous Organosilica Nanoparticles
Cas9-sgRNA Ribonucleoproteine
Delivery nano-system
Gene editing
PEGylated
RNP
Journal
Journal of nanobiotechnology
ISSN: 1477-3155
Titre abrégé: J Nanobiotechnology
Pays: England
ID NLM: 101152208
Informations de publication
Date de publication:
31 Mar 2021
31 Mar 2021
Historique:
received:
29
09
2020
accepted:
18
03
2021
entrez:
1
4
2021
pubmed:
2
4
2021
medline:
13
10
2021
Statut:
epublish
Résumé
There is a great interest in the efficient intracellular delivery of Cas9-sgRNA ribonucleoprotein complex (RNP) and its possible applications for in vivo CRISPR-based gene editing. In this study, a nanoporous mediated gene-editing approach has been successfully performed using a bi-functionalized aminoguanidine-PEGylated periodic mesoporous organosilica (PMO) nanoparticles (RNP@AGu@PEG The bi-functionalized MSN-based nanomaterials have been fully characterized using electron microscopy (TEM and SEM), nitrogen adsorption measurements, thermogravimetric analysis (TGA), X-ray powder diffraction (XRD), Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR), and dynamic light scattering (DLS). The results confirm that AGu@PEG Due to the high stability and biocompatibility, simple synthesis, and cost-effectiveness, the developed bi-functionalized PMO-based nano-network introduces a tailored nanocarrier that has remarkable potential as a promising trajectory for biomedical and RNP delivery applications.
Sections du résumé
BACKGROUND
BACKGROUND
There is a great interest in the efficient intracellular delivery of Cas9-sgRNA ribonucleoprotein complex (RNP) and its possible applications for in vivo CRISPR-based gene editing. In this study, a nanoporous mediated gene-editing approach has been successfully performed using a bi-functionalized aminoguanidine-PEGylated periodic mesoporous organosilica (PMO) nanoparticles (RNP@AGu@PEG
RESULTS
RESULTS
The bi-functionalized MSN-based nanomaterials have been fully characterized using electron microscopy (TEM and SEM), nitrogen adsorption measurements, thermogravimetric analysis (TGA), X-ray powder diffraction (XRD), Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR), and dynamic light scattering (DLS). The results confirm that AGu@PEG
CONCLUSIONS
CONCLUSIONS
Due to the high stability and biocompatibility, simple synthesis, and cost-effectiveness, the developed bi-functionalized PMO-based nano-network introduces a tailored nanocarrier that has remarkable potential as a promising trajectory for biomedical and RNP delivery applications.
Identifiants
pubmed: 33789675
doi: 10.1186/s12951-021-00838-z
pii: 10.1186/s12951-021-00838-z
pmc: PMC8011395
doi:
Substances chimiques
Guanidines
0
Polymers
0
RNA, Guide
0
Ribonucleoproteins
0
Silanes
0
Polyethylene Glycols
3WJQ0SDW1A
pimagedine
SCQ4EZQ113
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
95Références
Nat Nanotechnol. 2019 Oct;14(10):974-980
pubmed: 31501532
Nanotechnology. 2010 Mar 12;21(10):105102
pubmed: 20154366
Cell. 2014 Feb 13;156(4):836-43
pubmed: 24486104
FEBS Lett. 2014 Nov 3;588(21):3954-8
pubmed: 25241167
Pharmaceuticals (Basel). 2020 Jul 22;13(8):
pubmed: 32707857
J Assist Reprod Genet. 2016 May;33(5):581-588
pubmed: 27052831
Nat Methods. 2012 Jul;9(7):671-5
pubmed: 22930834
Toxicol Appl Pharmacol. 2006 Dec 15;217(3):252-9
pubmed: 17112558
Nat Biotechnol. 2016 Sep 08;34(9):933-941
pubmed: 27606440
Eur J Med Chem. 2014 Aug 18;83:646-54
pubmed: 25014638
Bioresour Technol. 2013 Feb;129:108-17
pubmed: 23238341
Nat Methods. 2015 Nov;12(11):1051-4
pubmed: 26344044
Nanomaterials (Basel). 2017 Jul 22;7(7):
pubmed: 28737672
Small. 2009 Nov;5(22):2565-75
pubmed: 19768700
Nanoscale. 2018 Jan 18;10(3):1063-1071
pubmed: 29266160
ACS Appl Mater Interfaces. 2017 Sep 20;9(37):32211-32219
pubmed: 28846376
Front Cell Infect Microbiol. 2019 Mar 22;9:69
pubmed: 30968001
Biomaterials. 2010 Jan;31(3):438-48
pubmed: 19800115
J Med Genet. 2019 Jan;56(1):4-9
pubmed: 29970486
Chem Soc Rev. 2012 May 7;41(9):3679-98
pubmed: 22441299
Cancer Gene Ther. 2020 Aug;27(7-8):515-527
pubmed: 31676843
Adv Drug Deliv Rev. 2008 Aug 17;60(11):1278-88
pubmed: 18514969
Biochim Biophys Acta. 2011 Sep;1814(9):1195-202
pubmed: 21530691
Chem Commun (Camb). 2003 Sep 7;(17):2136-7
pubmed: 13678168
Proc Natl Acad Sci U S A. 2016 Mar 15;113(11):2868-73
pubmed: 26929348
Cell. 2013 Dec 19;155(7):1479-91
pubmed: 24360272
Sci Rep. 2019 Aug 19;9(1):11960
pubmed: 31427598
Bioinformatics. 2014 Aug 1;30(15):2210-2
pubmed: 24728853
Mol Biotechnol. 2003 Jan;23(1):19-28
pubmed: 12611266
Front Chem. 2019 May 01;7:290
pubmed: 31119124
Sci Transl Med. 2017 Jan 11;9(372):
pubmed: 28077679
Langmuir. 2004 Aug 3;20(16):6940-5
pubmed: 15274607
Acta Pharm Sin B. 2018 Mar;8(2):165-177
pubmed: 29719777
Genome Res. 2014 Jun;24(6):1020-7
pubmed: 24696462
Angew Chem Int Ed Engl. 2016 May 23;55(22):6452-6
pubmed: 27079176
Angew Chem Int Ed Engl. 2015 Oct 5;54(41):12029-33
pubmed: 26310292
Nat Biotechnol. 2016 Mar;34(3):328-33
pubmed: 26829318
Biochim Biophys Acta Gen Subj. 2017 Sep;1861(9):2334-2341
pubmed: 28689990
Chem Soc Rev. 2013 May 7;42(9):3913-55
pubmed: 23081688
Science. 2019 Sep 20;365(6459):1301-1305
pubmed: 31488703
Genome Biol. 2015 Nov 19;16:253
pubmed: 26585795
Langmuir. 2009 Nov 17;25(22):13258-63
pubmed: 19722603
Int J Mol Sci. 2020 Apr 08;21(7):
pubmed: 32276405
Genome Res. 2014 Jun;24(6):1012-9
pubmed: 24696461
Proc Natl Acad Sci U S A. 2008 Mar 25;105(12):4697-702
pubmed: 18353990
Nat Commun. 2018 Oct 31;9(1):4548
pubmed: 30382085
Nature. 2016 Nov 15;539(7630):479
pubmed: 27882996
ACS Nano. 2017 Mar 28;11(3):2452-2458
pubmed: 28129503
Small. 2016 Oct;12(37):5169-5177
pubmed: 27487484
Nat Methods. 2016 Oct;13(10):868-74
pubmed: 27595405
Proc Natl Acad Sci U S A. 2015 Aug 18;112(33):10437-42
pubmed: 26216948
Sci Adv. 2015 Aug 14;1(7):e1500454
pubmed: 26601238
Nanoscale. 2013 Jun 21;5(12):5349-59
pubmed: 23649009
Polymers (Basel). 2020 Apr 11;12(4):
pubmed: 32290489
Nat Biotechnol. 2015 Jan;33(1):73-80
pubmed: 25357182
Nanoscale. 2012 Oct 21;4(20):6588-96
pubmed: 22976432
J Nanobiotechnology. 2020 Jan 20;18(1):16
pubmed: 31959180
Mol Ther Nucleic Acids. 2018 Sep 7;12:267-274
pubmed: 30195765
FASEB J. 2005 Dec;19(14):2014-6
pubmed: 16230334
Nat Biomed Eng. 2019 Feb;3(2):126-136
pubmed: 30944431
Nat Biotechnol. 2013 Mar;31(3):230-2
pubmed: 23360966
Mol Ther. 2016 Mar;24(3):564-9
pubmed: 26449883
Nat Commun. 2018 May 15;9(1):1911
pubmed: 29765029
Nanomedicine. 2009 Dec;5(4):410-8
pubmed: 19341815
Sci Rep. 2017 Aug 22;7(1):9159
pubmed: 28831162
J Phys Chem B. 2006 Feb 16;110(6):2656-61
pubmed: 16471868
Nat Biotechnol. 2017 May;35(5):431-434
pubmed: 28191903
J Am Chem Soc. 2018 Jan 10;140(1):143-146
pubmed: 29272114
Biol Proced Online. 2009 May 15;11:145-60
pubmed: 19495911
Nanoscale. 2019 Nov 28;11(44):21317-21323
pubmed: 31670340
Small. 2015 Nov 25;11(44):5949-55
pubmed: 26426420
Semin Cancer Biol. 2019 Apr;55:106-119
pubmed: 29673923
Chemistry. 2006 Aug 7;12(23):5934-43
pubmed: 16832799
Mol Ther. 2018 Jul 5;26(7):1818-1827
pubmed: 29754775
Mol Biotechnol. 2013 Mar;53(3):308-14
pubmed: 22407723
Sci Rep. 2017 Jan 31;7:41409
pubmed: 28139667
ACS Appl Mater Interfaces. 2017 Mar 22;9(11):9470-9483
pubmed: 28252278
Nanoscale. 2015 Oct 7;7(37):15046-50
pubmed: 26165456
Nat Protoc. 2013 Nov;8(11):2281-2308
pubmed: 24157548
Nanomaterials (Basel). 2018 Apr 10;8(4):
pubmed: 29642621
Nanoscale. 2015 Dec 28;7(48):20318-34
pubmed: 26585498
Science. 2020 Feb 28;367(6481):
pubmed: 32029687
Sci Adv. 2020 Jun 19;6(25):eaaz4462
pubmed: 32596445
Nat Commun. 2017 May 22;8:15334
pubmed: 28530235
Nano Lett. 2020 May 13;20(5):4014-4021
pubmed: 32298126