Activation of STAT3-mediated ciliated cell survival protects against severe infection by respiratory syncytial virus.
Apoptosis
Infectious disease
Journal
The Journal of clinical investigation
ISSN: 1558-8238
Titre abrégé: J Clin Invest
Pays: United States
ID NLM: 7802877
Informations de publication
Date de publication:
01 Nov 2024
01 Nov 2024
Historique:
received:
17
06
2024
accepted:
15
08
2024
medline:
1
11
2024
pubmed:
1
11
2024
entrez:
1
11
2024
Statut:
epublish
Résumé
Respiratory syncytial virus (RSV) selectively targets ciliated cells in human bronchial epithelium and can cause bronchiolitis and pneumonia, mostly in infants. To identify molecular targets of intervention during RSV infection in infants, we investigated how age regulates RSV interaction with the bronchial epithelium barrier. Employing precision-cut lung slices and air-liquid interface cultures generated from infant and adult human donors, we found robust RSV virus spread and extensive apoptotic cell death only in infant bronchial epithelium. In contrast, adult bronchial epithelium showed no barrier damage and limited RSV infection. Single nuclear RNA-Seq revealed age-related insufficiency of an antiapoptotic STAT3 activation response to RSV infection in infant ciliated cells, which was exploited to facilitate virus spread via the extruded apoptotic ciliated cells carrying RSV. Activation of STAT3 and blockade of apoptosis rendered protection against severe RSV infection in infant bronchial epithelium. Lastly, apoptotic inhibitor treatment of a neonatal mouse model of RSV infection mitigated infection and inflammation in the lung. Taken together, our findings identify a STAT3-mediated antiapoptosis pathway as a target to battle severe RSV disease in infants.
Identifiants
pubmed: 39484716
pii: 183978
doi: 10.1172/JCI183978
doi:
pii:
Substances chimiques
STAT3 Transcription Factor
0
STAT3 protein, human
0
Stat3 protein, mouse
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM