Expression and Prognostic Significance of CD47-SIRPA Macrophage Checkpoint Molecules in Colorectal Cancer.
Aged
Aged, 80 and over
Antigens, CD
/ metabolism
Antigens, Differentiation
/ metabolism
Antigens, Differentiation, Myelomonocytic
/ metabolism
Biomarkers, Tumor
/ metabolism
CD47 Antigen
/ metabolism
Colorectal Neoplasms
/ metabolism
Female
Humans
Intestinal Mucosa
/ metabolism
Macrophages
/ metabolism
Male
Middle Aged
Prognosis
Receptors, Cell Surface
/ metabolism
Receptors, Immunologic
/ metabolism
Survival Analysis
CD47
colorectal cancer (CRC)
immunohistochemistry
macrophage checkpoint
signal regulatory protein-alpha (SIRPA)
Journal
International journal of molecular sciences
ISSN: 1422-0067
Titre abrégé: Int J Mol Sci
Pays: Switzerland
ID NLM: 101092791
Informations de publication
Date de publication:
07 Mar 2021
07 Mar 2021
Historique:
received:
04
02
2021
revised:
25
02
2021
accepted:
03
03
2021
entrez:
3
4
2021
pubmed:
4
4
2021
medline:
20
5
2021
Statut:
epublish
Résumé
Despite the confirmed anti-cancer effects of T-cell immune checkpoint inhibitors, in colorectal cancer (CRC) they are only effective in a small subset of patients with microsatellite-unstable tumors. Thus, therapeutics targeting other types of CRCs or tumors refractory to T-cell checkpoint inhibitors are desired. The binding of aberrantly expressed CD47 on tumor cells to signal regulatory protein-alpha (SIRPA) on macrophages allows tumor cells to evade immune destruction. Based on these observations, drugs targeting the macrophage checkpoint have been developed with the expectation of anti-cancer effects against T-cell immune checkpoint inhibitor-refractory tumors. In the present study, 269 primary CRCs were evaluated immunohistochemically for CD47, SIRPA, CD68, and CD163 expression to assess their predictive utility and the applicability of CD47-SIRPA axis-modulating drugs. Thirty-five percent of the lesions (95/269) displayed CD47 expression on the cytomembrane of CRC cells. CRCs contained various numbers of tumor-associated immune cells (TAIs) with SIRPA, CD68, or CD163 expression. The log-rank test revealed that patients with CD47-positive CRCs had significantly worse survival than CD47-negative patients. Multivariate Cox hazards regression analysis identified tubular-forming histology (hazard ratio (R) = 0.23), age < 70 years (HR = 0.48), and high SIRPA-positive TAI counts (HR = 0.55) as potential favorable factors. High tumor CD47 expression (HR = 1.75), lymph node metastasis (HR = 2.26), and peritoneal metastasis (HR = 5.80) were cited as potential independent risk factors. Based on our observations, CD47-SIRPA pathway-modulating therapies may be effective in patients with CRC.
Identifiants
pubmed: 33799989
pii: ijms22052690
doi: 10.3390/ijms22052690
pmc: PMC7975978
pii:
doi:
Substances chimiques
Antigens, CD
0
Antigens, Differentiation
0
Antigens, Differentiation, Myelomonocytic
0
Biomarkers, Tumor
0
CD163 antigen
0
CD47 Antigen
0
CD47 protein, human
0
CD68 antigen, human
0
Receptors, Cell Surface
0
Receptors, Immunologic
0
SIRPA protein, human
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Japan Society for the Promotion of Science
ID : 17K08706
Organisme : Japan Society for the Promotion of Science
ID : 20K07410
Références
N Engl J Med. 2018 Nov 01;379(18):1711-1721
pubmed: 30380386
N Engl J Med. 2015 Jun 25;372(26):2509-20
pubmed: 26028255
Cell. 2010 Sep 3;142(5):699-713
pubmed: 20813259
Oncol Rep. 2005 Aug;14(2):425-31
pubmed: 16012726
Biomed Pharmacother. 2019 Nov;119:109105
pubmed: 31493748
J Cancer Res Clin Oncol. 2019 Dec;145(12):3005-3019
pubmed: 31650222
Cells. 2019 Dec 17;8(12):
pubmed: 31861233
J Clin Oncol. 2019 Apr 20;37(12):946-953
pubmed: 30811285
Cancer Sci. 2020 Jul;111(7):2608-2619
pubmed: 32342603
Science. 1996 Nov 1;274(5288):795-8
pubmed: 8864123
Int J Mol Sci. 2017 Dec 29;19(1):
pubmed: 29286292
Am J Physiol Gastrointest Liver Physiol. 2016 Jul 1;311(1):G59-73
pubmed: 27229123
Biomed Pharmacother. 2015 Jul;73:109-15
pubmed: 26211590
J Clin Oncol. 2009 Jul 10;27(20):3330-7
pubmed: 19528371
Nat Rev Clin Oncol. 2017 Aug;14(8):463-482
pubmed: 28374786
Mol Biol Cell. 2004 Aug;15(8):3950-63
pubmed: 15215311
Mol Cell Biol. 1996 Dec;16(12):6887-99
pubmed: 8943344
Front Oncol. 2015 Jan 15;4:385
pubmed: 25642417
J Cell Sci. 1995 Nov;108 ( Pt 11):3419-25
pubmed: 8586654
Blood Adv. 2019 Apr 9;3(7):1145-1153
pubmed: 30962222
Cancer Res. 1996 Oct 15;56(20):4625-9
pubmed: 8840975
PLoS One. 2015 Sep 21;10(9):e0137345
pubmed: 26390038
Int J Urol. 2000 Jul;7(7):263-9
pubmed: 10910229
J Exp Med. 1997 Jan 6;185(1):1-11
pubmed: 8996237
Bone Marrow Transplant. 2013 Mar;48(3):452-8
pubmed: 23208313
Biosci Rep. 2020 Jul 31;40(7):
pubmed: 32602545
J Biol Chem. 2001 Oct 26;276(43):40156-66
pubmed: 11479293
PLoS One. 2012;7(10):e47045
pubmed: 23077543
Cell. 2009 Jul 23;138(2):286-99
pubmed: 19632179
Sci Transl Med. 2010 Dec 22;2(63):63ra94
pubmed: 21178137
J Biol Chem. 1996 Jan 5;271(1):21-4
pubmed: 8550562
Blood Cancer J. 2019 Oct 14;9(10):84
pubmed: 31611550
Proc Natl Acad Sci U S A. 2012 Apr 24;109(17):6662-7
pubmed: 22451913
J Cell Biol. 1990 Dec;111(6 Pt 1):2785-94
pubmed: 2277087
Cell. 2009 Jul 23;138(2):271-85
pubmed: 19632178
Anticancer Res. 2002 Nov-Dec;22(6C):4281-4
pubmed: 12553070
Proc Natl Acad Sci U S A. 2013 Jul 2;110(27):11103-8
pubmed: 23690610