Contrasting Rootstock-Mediated Growth and Yield Responses in Salinized Pepper Plants (
hormonal balance
ion homeostasis
pepper
reproductive growth
rootstock
salinity
vegetative growth
Journal
International journal of molecular sciences
ISSN: 1422-0067
Titre abrégé: Int J Mol Sci
Pays: Switzerland
ID NLM: 101092791
Informations de publication
Date de publication:
24 Mar 2021
24 Mar 2021
Historique:
received:
05
03
2021
revised:
20
03
2021
accepted:
22
03
2021
entrez:
3
4
2021
pubmed:
4
4
2021
medline:
21
4
2021
Statut:
epublish
Résumé
Salinity provokes an imbalance of vegetative to generative growth, thus impairing crop productivity. Unlike breeding strategies, grafting is a direct and quick alternative to improve salinity tolerance in horticultural crops, through rebalancing plant development. Providing that hormones play a key role in plant growth and development and stress responses, we hypothesized that rootstock-mediated reallocation of vegetative growth and yield under salinity was associated with changes in the hormonal balance. To test this hypothesis, the hybrid pepper variety (
Identifiants
pubmed: 33804877
pii: ijms22073297
doi: 10.3390/ijms22073297
pmc: PMC8037536
pii:
doi:
Substances chimiques
Cytokinins
0
Abscisic Acid
72S9A8J5GW
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : European Regional Development Fund
ID : FEDER 1420-08
Références
Tree Physiol. 2009 Jul;29(7):927-36
pubmed: 19429629
Crop Sci. 2002 Jan;42(1):152-159
pubmed: 11756266
Front Plant Sci. 2020 May 05;11:460
pubmed: 32431719
J Plant Physiol. 2014 Jun 15;171(10):842-51
pubmed: 24877676
Theor Appl Genet. 2010 Jun;121(1):105-15
pubmed: 20180091
Plant Physiol Biochem. 2021 Mar;160:239-256
pubmed: 33524921
Plant Cell Rep. 2011 May;30(5):807-23
pubmed: 21298270
Ann Bot. 2009 Feb;103(4):551-60
pubmed: 18662937
Front Plant Sci. 2019 May 29;10:695
pubmed: 31191592
Funct Plant Biol. 2009 Feb;36(2):125-136
pubmed: 32688632
J Exp Bot. 2015 Feb;66(3):863-78
pubmed: 25392479
J Exp Bot. 2015 Apr;66(8):2211-26
pubmed: 25754404
J Exp Bot. 2016 Dec;67(22):6351-6362
pubmed: 27811005
Plant Cell Environ. 2015 Oct;38(10):2157-70
pubmed: 25789569
J Exp Bot. 2008;59(15):4119-31
pubmed: 19036841
Plant Sci. 2020 Jun;295:110268
pubmed: 32534608
Nature. 2010 Jul 29;466(7306):552-3
pubmed: 20671689
J Exp Bot. 2011 Jan;62(1):125-40
pubmed: 20959628
J Exp Bot. 2014 Nov;65(20):6081-95
pubmed: 25170099
New Phytol. 2012 Apr;194(2):301-3
pubmed: 22428698
Front Plant Sci. 2019 Nov 11;10:1290
pubmed: 31781131
Physiol Plant. 2015 Nov;155(3):296-314
pubmed: 25582191
J Plant Physiol. 2015 Aug 15;186-187:50-8
pubmed: 26368284
Plant Cell Environ. 2007 Jan;30(1):67-78
pubmed: 17177877
Plant Sci. 2016 Oct;251:90-100
pubmed: 27593467
Front Plant Sci. 2019 Jan 28;10:38
pubmed: 30745905
Biomolecules. 2019 Aug 22;9(9):
pubmed: 31443419
Plant Cell Environ. 2009 Jul;32(7):928-38
pubmed: 19302168
Plant Signal Behav. 2010 Jan;5(1):45-8
pubmed: 20592807
Plant Cell Physiol. 2020 Dec 23;61(11):1891-1901
pubmed: 32886774
Plant Sci. 2015 Jan;230:12-22
pubmed: 25480004
Int J Mol Sci. 2018 Sep 06;19(9):
pubmed: 30200653
J Plant Physiol. 2012 Feb 15;169(3):303-10
pubmed: 22153898
Plant J. 2021 Jan;105(2):307-321
pubmed: 33145840
N Biotechnol. 2016 Sep 25;33(5 Pt B):676-691
pubmed: 26877151
Biotechnol Adv. 2014 Jan-Feb;32(1):12-30
pubmed: 24513173
J Plant Physiol. 2017 Jul;214:134-144
pubmed: 28482334
Plant Physiol Biochem. 2020 Mar;148:207-219
pubmed: 31972389
J Plant Physiol. 2016 Apr 1;193:1-11
pubmed: 26918569
J Exp Bot. 2008;59(11):3039-50
pubmed: 18573798
Plant Sci. 2015 Mar;232:1-12
pubmed: 25617318
Nat Plants. 2015 Jun 01;1:15073
pubmed: 27250008