Expression interplay of genes coding for calcium-binding proteins and transcription factors during the osmotic phase provides insights on salt stress response mechanisms in bread wheat.


Journal

Plant molecular biology
ISSN: 1573-5028
Titre abrégé: Plant Mol Biol
Pays: Netherlands
ID NLM: 9106343

Informations de publication

Date de publication:
01 Nov 2024
Historique:
received: 09 02 2024
accepted: 17 09 2024
medline: 1 11 2024
pubmed: 1 11 2024
entrez: 1 11 2024
Statut: epublish

Résumé

Bread wheat is an important crop for the human diet, but the increasing soil salinization is reducing the yield. The Ca

Identifiants

pubmed: 39485577
doi: 10.1007/s11103-024-01523-z
pii: 10.1007/s11103-024-01523-z
doi:

Substances chimiques

Transcription Factors 0
Plant Proteins 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

119

Subventions

Organisme : Deutsche Gesellschaft für Internationale Zusammenarbeit
ID : Project 09.7860.1-001.00
Organisme : Departamento Administrativo de Ciencia, Tecnología e Innovación (COLCIENCIAS)
ID : 679
Organisme : Deutsche Forschungsgemeinschaft
ID : EXC 2070 - 390732324

Informations de copyright

© 2024. The Author(s).

Références

Ackermann M, Sikora-Wohlfeld W, Beyer A (2013) Impact of natural genetic variation on gene expression dynamics. PLoS Genet 9:e1003514
pubmed: 23754949 pmcid: 3674999 doi: 10.1371/journal.pgen.1003514
Alaux M, Rogers J, Letellier T, Flores R, Alfama F, Pommier C, Mohellibi N, Durand S, Kimmel E, Michotey C, Guerche C, Loaec M, Lainé M, Steinbach D, Choulet F, Rimbert H, Leroy P, Guilhot N, Salse J, Feuillet C, Paux E, Eversole K, Adam-Blondon A-F, Quesneville H, International Wheat Genome Sequencing Consortium (2018) Linking the International Wheat Genome Sequencing Consortium bread wheat reference genome sequence to wheat genetic and phenomic data. Genome Biol 19:111
pubmed: 30115101 pmcid: 6097284 doi: 10.1186/s13059-018-1491-4
Alptekin B, Langridge P, Budak H (2017) Abiotic stress miRNomes in the Triticeae. Funct Integr Genomics 17:145–170
pubmed: 27665284 doi: 10.1007/s10142-016-0525-9
Asefpour Vakilian K (2020) Machine learning improves our knowledge about miRNA functions towards plant abiotic stresses. Sci Rep 10:3041
pubmed: 32080299 pmcid: 7033123 doi: 10.1038/s41598-020-59981-6
Asif MA, Garcia M, Tilbrook J, Brien C, Dowling K, Berger B, Schilling RK, Short L, Trittermann C, Gilliham M, Fleury D, Roy SJ, Pearson AS (2021) Identification of salt tolerance QTL in a wheat RIL mapping population using destructive and non-destructive phenotyping. Funct Plant Biol 48:131
pubmed: 32835651 doi: 10.1071/FP20167
Banerjee A, Roychoudhury A (2015) WRKY proteins: signaling and regulation of expression during abiotic stress responses. Sci World J 2015:807560
doi: 10.1155/2015/807560
Barah P, Winge P, Kusnierczyk A, Tran DH, Bones AM (2013) Molecular signatures in Arabidopsis thaliana in response to insect attack and bacterial infection. PLoS ONE 8:e58987
pubmed: 23536844 pmcid: 3607608 doi: 10.1371/journal.pone.0058987
Borrill P, Harrington SA, Uauy C (2019) Applying the latest advances in genomics and phenomics for trait discovery in polyploid wheat. Plant J 97:56–72
pubmed: 30407665 doi: 10.1111/tpj.14150
Bürstenbinder K, Möller B, Plötner R, Stamm G, Hause G, Mitra D, Abel S (2017) The IQD family of calmodulin-binding proteins links calcium signaling to microtubules, membrane subdomains, and the nucleus. Plant Physiol 173:1692–1708
pubmed: 28115582 pmcid: 5338658 doi: 10.1104/pp.16.01743
Cai M, Chen LS, Liu J, Yang C (2020) IGREX for quantifying the impact of genetically regulated expression on phenotypes. NAR Genom Bioinform 2:lqaa010
pubmed: 32118202 pmcid: 7034630 doi: 10.1093/nargab/lqaa010
Chapman JM, Muhlemann JK, Gayomba SR, Muday GK (2019) RBOH-dependent ROS synthesis and ROS scavenging by plant specialized metabolites to modulate plant development and stress responses. Chem Res Toxicol 32:370–396
pubmed: 30781949 pmcid: 6857786 doi: 10.1021/acs.chemrestox.9b00028
Choudhury FK, Rivero RM, Blumwald E, Mittler R (2017) Reactive oxygen species, abiotic stress, and stress combination. Plant J 90:856–867
pubmed: 27801967 doi: 10.1111/tpj.13299
Curtis T, Halford NG (2014) Food security: the challenge of increasing wheat yield and the importance of not compromising food safety. Ann Appl Biol 164:354–372
pubmed: 25540461 pmcid: 4240735 doi: 10.1111/aab.12108
Dadshani S (2018) Genetic and physiological characterization of traits related to salinity tolerance in an advanced backcross population of wheat. PhD Thesis. University of Bonn. https://bonndoc.ulb.uni-bonn.de/xmlui/handle/20.500.11811/7341
Dai X, Zhuang Z, Zhao PX (2018) psRNATarget: a plant small RNA target analysis server (2017 release). Nucleic Acids Res 46:W49–W54
pubmed: 29718424 pmcid: 6030838 doi: 10.1093/nar/gky316
Duarte-Delgado D (2020) Insights into the salt stress adaptation mechanisms of bread wheat genotypes using a systemic approach. PhD Thesis. University of Bonn. https://hdl.handle.net/20.500.11811/8599
Duarte-Delgado D, Dadshani S, Schoof H, Oyiga BC, Schneider M, Mathew B, Léon J, Ballvora A (2020) Transcriptome profiling at osmotic and ionic phases of salt stress response in bread wheat uncovers trait-specific candidate genes. BMC Plant Biol 20:428
pubmed: 32938380 pmcid: 7493341 doi: 10.1186/s12870-020-02616-9
Eisman RC, Kaufman TC (2013) Probing the boundaries of Orthology: the unanticipated rapid evolution of Drosophila centrosomin. Genetics 194:903–926
pubmed: 23749319 pmcid: 3730919 doi: 10.1534/genetics.113.152546
Erpen L, Devi HS, Grosser JW, Dutt M (2018) Potential use of the DREB/ERF, MYB, NAC and WRKY transcription factors to improve abiotic and biotic stress in transgenic plants. Plant Cell Tissue Organ Cult 132:1–25
doi: 10.1007/s11240-017-1320-6
Gaidatzis D, Burger L, Florescu M, Stadler MB (2015) Analysis of intronic and exonic reads in RNA-seq data characterizes transcriptional and post-transcriptional regulation. Nat Biotechnol 33:722–729
pubmed: 26098447 doi: 10.1038/nbt.3269
Galon Y, Finkler A, Fromm H (2010) Calcium-regulated transcription in plants. Mol Plant 3:653–669
pubmed: 20457642 doi: 10.1093/mp/ssq019
Garg G, Ruchi GY (2015) Key roles of calreticulin and calnexin proteins in plant perception under stress conditions: a review. Adv Life Sci 5:18–26
Gilroy S, Białasek M, Suzuki N, Górecka M, Devireddy AR, Karpiński S, Mittler R (2016) ROS, calcium, and electric signals: key mediators of rapid systemic signaling in plants. Plant Physiol 171:1606–1615
pubmed: 27208294 pmcid: 4936577 doi: 10.1104/pp.16.00434
Guo P, Chen S, Li D, Zhang J, Luo J, Zhang A, Yu D, Bloom MS, Chen L, Chen W (2020) SFPQ is involved in regulating arsenic-induced oxidative stress by interacting with the miRNA-induced silencing complexes. Environ Pollut 261:114160
pubmed: 32066060 doi: 10.1016/j.envpol.2020.114160
Gupta B, Huang B (2014) Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genomics 2014:701596
pubmed: 24804192 pmcid: 3996477 doi: 10.1155/2014/701596
Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acid Symp Ser 41:95–98
Hedges SB (1992) The number of replications needed for accurate estimation of the bootstrap P value in phylogenetic studies. Mol Biol Evol 9:366–369
pubmed: 1560769
Himanen SV, Sistonen L (2019) New insights into transcriptional reprogramming during cellular stress. J Cell Sci 132:jcs238402
pubmed: 31676663 doi: 10.1242/jcs.238402
Ho HL (2015) Functional roles of plant protein kinases in signal transduction pathways during abiotic and biotic stress. J Biodivers Biopros Dev 2:147
Hu P, Zheng Q, Luo Q, Teng W, Li H, Li B, Li Z (2021) Genome-wide association study of yield and related traits in common wheat under salt-stress conditions. BMC Plant Biol 21:27
pubmed: 33413113 pmcid: 7792188 doi: 10.1186/s12870-020-02799-1
Ismail A, Takeda S, Nick P (2014) Life and death under salt stress: same players, different timing? J Exp Bot 65:2963–2979
pubmed: 24755280 doi: 10.1093/jxb/eru159
IWGSC (2018) Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361:eaar7191
doi: 10.1126/science.aar7191
Jan A, Hadi F, Midrarullah AA, Rahman K (2017) Role of CBF/DREB gene expression in abiotic stress tolerance. A review. Int J Hort Agric 2:1–12
Javid S, Bihamta MR, Omidi M, Abbasi AR, Alipour H, Ingvarsson PK (2022) Genome-Wide Association Study (GWAS) and genome prediction of seedling salt tolerance in bread wheat (Triticum aestivum L.). BMC Plant Biol 22:581
pubmed: 36513980 pmcid: 9746167 doi: 10.1186/s12870-022-03936-8
Jin J, Tian F, Yang D-C, Meng Y-Q, Kong L, Luo J, Gao G (2017) PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Res 45:D1040–D1045
pubmed: 27924042 doi: 10.1093/nar/gkw982
Julkowska MM, Testerink C (2015) Tuning plant signaling and growth to survive salt. Trends Plant Sci 20:586–594
pubmed: 26205171 doi: 10.1016/j.tplants.2015.06.008
Karimzadeh H, Borzouei A, Naserian B, Tabatabaee SA, Rahemi MR (2023) Investigating the response mechanisms of bread wheat mutants to salt stress. Sci Rep 13:18605
pubmed: 37903829 pmcid: 10616188 doi: 10.1038/s41598-023-45009-2
Katoh K, Rozewicki J, Yamada K (2019) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinformatics 20:1160–1166
pubmed: 28968734 doi: 10.1093/bib/bbx108
Kaur A, Sharma A, Madhu VPC, Upadhyay SK (2022) EF-hand domain-containing proteins in Triticum aestivum: insight into their roles in stress response and signalling. S Afr J Bot 149:663–681
doi: 10.1016/j.sajb.2022.06.059
Kaya H, Takeda S, Kobayashi MJ, Kimura S, Iizuka A, Imai A, Hishinuma H, Kawarazaki T, Mori K, Yamamoto Y, Murakami Y, Nakauchi A, Abe M, Kuchitsu K (2019) Comparative analysis of the reactive oxygen species-producing enzymatic activity of Arabidopsis NADPH oxidases. Plant J 98:291–300
pubmed: 30570803 doi: 10.1111/tpj.14212
Keshtehgar A, Rigi K, Vazirimehr M (2013) Effects of salt stress in crop plants. Int J Agric Crop Sci 5:2863–2867
Khraiwesh B, Zhu J-K, Zhu J (2012) Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochim Biophys Acta 1819:137–148
pubmed: 21605713 doi: 10.1016/j.bbagrm.2011.05.001
Klein D, Ricordi C, Pastori RL (2004) Quantification of ribozyme target RNA using real-time PCR. In: Sioud M (ed) Ribozymes and siRNA protocols. Humana Press, Totowa, pp 49–56
doi: 10.1385/1-59259-746-7:049
Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549
pubmed: 29722887 pmcid: 5967553 doi: 10.1093/molbev/msy096
Kunert A, Naz AA, Dedeck O, Pillen K, Léon J (2007) AB-QTL analysis in winter wheat: I. synthetic hexaploid wheat (T. turgidum ssp. dicoccoides x T. tauschii) as a source of favourable alleles for milling and baking quality traits. Theor Appl Genet 115:683–695
pubmed: 17634917 doi: 10.1007/s00122-007-0600-7
La Verde V, Dominici P, Astegno A (2018) Towards understanding plant calcium signaling through calmodulin-like proteins: a biochemical and structural perspective. Int J Mol Sci 19:331
doi: 10.3390/ijms19051331
Lange W, Jochemsen G (1992) Use of the gene pools of Triticum turgidum ssp. dicoccoides and Aegilops squarrosa for the breeding of common wheat (T. aestivum), through chromosome-doubled hybrids. Euphytica 59:213–220
doi: 10.1007/BF00041274
Lemoine F, Domelevo Entfellner J-B, Wilkinson E, Correia D, Dávila Felipe M, De Oliveira T, Gascuel O (2018) Renewing Felsenstein’s phylogenetic bootstrap in the era of big data. Nature 556:452–456
pubmed: 29670290 pmcid: 6030568 doi: 10.1038/s41586-018-0043-0
Lethin J, Byrt C, Berger B, Brien C, Jewell N, Roy S, Mousavi H, Sukumaran S, Olsson O, Aronsson H (2022) Improved salinity tolerance-associated variables observed in EMS mutagenized wheat lines. Int J Mol Sci 23:11386
pubmed: 36232687 pmcid: 9570438 doi: 10.3390/ijms231911386
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079
pubmed: 19505943 pmcid: 2723002 doi: 10.1093/bioinformatics/btp352
Li C, Zhang W, Yuan M, Jiang L, Sun B, Zhang D, Shao Y, Liu A, Liu X, Ma J (2019) Transcriptome analysis of osmotic-responsive genes in ABA-dependent and -independent pathways in wheat (Triticum aestivum L.) roots. PeerJ 7:e6519
pubmed: 30863676 pmcid: 6407504 doi: 10.7717/peerj.6519
Li Y, Zhang H, Dong F, Zou J, Gao C, Zhu Z, Liu Y (2022) Multiple roles of wheat calmodulin genes during stress treatment and TaCAM2-D as a positive regulator in response to drought and salt tolerance. Int J Biol Macromol 220:985–997
pubmed: 36027985 doi: 10.1016/j.ijbiomac.2022.08.124
Li J, Gao X, Chen X, Fan Z, Zhang Y, Wang Z, Shi J, Wang C, Zhang H, Wang L, Zhao Q (2023) Comparative transcriptome responses of leaf and root tissues to salt stress in wheat strains with different salinity tolerances. Front Genet 14:1015599
pubmed: 36911411 pmcid: 9996022 doi: 10.3389/fgene.2023.1015599
Liang G, He H, Yu D (2012) Identification of nitrogen starvation-responsive microRNAs in Arabidopsis thaliana. PLoS ONE 7:e48951
pubmed: 23155433 pmcid: 3498362 doi: 10.1371/journal.pone.0048951
Liao C, Zheng Y, Guo Y (2017) MYB30 transcription factor regulates oxidative and heat stress responses through ANNEXIN-mediated cytosolic calcium signaling in Arabidopsis. New Phytol 216:163–177
pubmed: 28726305 doi: 10.1111/nph.14679
Liu Y, Chen W, Liu L, Su Y, Li Y, Jia W, Jiao B, Wang J, Yang F, Dong F, Chai J, Zhao H, Lv M, Li Y, Zhou S (2022) Genome-wide identification and expression analysis of calmodulin and calmodulin-like genes in wheat (Triticum aestivum L.). Plant Signal Behav 17:2013646
pubmed: 35034573 pmcid: 8959510 doi: 10.1080/15592324.2021.2013646
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25:402–408
pubmed: 11846609 doi: 10.1006/meth.2001.1262
Loginova DB, Silkova OG (2018) The genome of bread wheat Triticum aestivum L.: unique structural and functional properties. Russ J Genet 54:403–414
doi: 10.1134/S1022795418040105
Malabarba J, Meents AK, Reichelt M, Scholz SS, Peiter E, Rachowka J, Konopka-Postupolska D, Wilkins KA, Davies JM, Oelmüller R, Mithöfer A (2021) ANNEXIN1 mediates calcium-dependent systemic defense in Arabidopsis plants upon herbivory and wounding. New Phytol 231:243–254
pubmed: 33586181 doi: 10.1111/nph.17277
Medvedev SS (2018) Principles of calcium signal generation and transduction in plant cells. Russ J Plant Physiol 65:771–783
doi: 10.1134/S1021443718060109
Mitchell AL, Attwood TK, Babbitt PC, Blum M, Bork P, Bridge A, Brown SD, Chang H-Y, El-Gebali S, Fraser MI, Gough J, Haft DR, Huang H, Letunic I, Lopez R, Luciani A, Madeira F, Marchler-Bauer A, Mi H, Natale DA, Necci M, Nuka G, Orengo C, Pandurangan AP, Paysan-Lafosse T, Pesseat S, Potter SC, Qureshi MA, Rawlings ND, Redaschi N, Richardson LJ, Rivoire C, Salazar GA, Sangrador-Vegas A, Sigrist CJA, Sillitoe I, Sutton GG, Thanki N, Thomas PD, Tosatto SCE, Yong S-Y, Finn RD (2019) InterPro in 2019: improving coverage, classification and access to protein sequence annotations. Nucleic Acids Res 47:D351–D360
pubmed: 30398656 doi: 10.1093/nar/gky1100
Mohanta TK, Yadav D, Khan AL, Hashem A, Abd Allah EF, Al-Harrasi A (2019) Molecular players of EF-hand containing calcium signaling event in plants. Int J Mol Sci 20:1476
pubmed: 30909616 pmcid: 6471108 doi: 10.3390/ijms20061476
Moinoddini F, Mirshamsi Kakhki A, Bagheri A, Jalilian A (2023) Genome-wide analysis of annexin gene family in Schrenkiella parvula and Eutrema salsugineum suggests their roles in salt stress response. PLoS ONE 18:e0280246
pubmed: 36652493 pmcid: 9847905 doi: 10.1371/journal.pone.0280246
Moldovan D, Spriggs A, Yang J, Pogson BJ, Dennis ES, Wilson IW (2010) Hypoxia-responsive microRNAs and trans-acting small interfering RNAs in Arabidopsis. J Exp Bot 61:165–177
pubmed: 19815687 doi: 10.1093/jxb/erp296
Montenegro JD, Golicz AA, Bayer PE, Hurgobin B, Lee H, Chan C-KK, Visendi P, Lai K, Doležel J, Batley J, Edwards D (2017) The pangenome of hexaploid bread wheat. Plant J 90:1007–1013
pubmed: 28231383 doi: 10.1111/tpj.13515
Muzammil S, Shrestha A, Dadshani S, Pillen K, Siddique S, Léon J, Naz AA (2018) An ancestral allele of pyrroline-5-carboxylate synthase1 promotes proline accumulation and drought adaptation in cultivated barley. Plant Physiol 178:771–782
pubmed: 30131422 pmcid: 6181029 doi: 10.1104/pp.18.00169
Nakayama R, Safi MT, Ahmadzai W, Sato K, Kawaura K (2022) Comparative transcriptome analysis of synthetic and common wheat in response to salt stress. Sci Rep 12:11534
pubmed: 35798819 pmcid: 9262916 doi: 10.1038/s41598-022-15733-2
Oyiga BC, Sharma RC, Baum M, Ogbonnaya FC, Léon J, Ballvora A (2018) Allelic variations and differential expressions detected at quantitative trait loci for salt stress tolerance in wheat. Plant Cell Environ 41:919–935
pubmed: 28044314 doi: 10.1111/pce.12898
Oyiga BC, Ogbonnaya FC, Sharma RC, Baum M, Léon J, Ballvora A (2019) Genetic and transcriptional variations in NRAMP-2 and OPAQUE1 genes are associated with salt stress response in wheat. Theor Appl Genet 132:323–346
pubmed: 30392081 doi: 10.1007/s00122-018-3220-5
Pandolfi C, Bazihizina N, Giordano C, Mancuso S, Azzarello E (2017) Salt acclimation process: a comparison between a sensitive and a tolerant Olea europaea cultivar. Tree Physiol 37:380–388
pubmed: 28338715 doi: 10.1093/treephys/tpw127
Parihar P, Singh S, Singh R, Singh VP, Prasad SM (2015) Effect of salinity stress on plants and its tolerance strategies: a review. Environ Sci Pollut Res Int 22:4056–4075
pubmed: 25398215 doi: 10.1007/s11356-014-3739-1
Pedersen TL (2024) An implementation of grammar of graphics for graphs and networks. https://ggraph.data-imaginist.com/ . Accessed 10 Aug 2024
Pessarakli M, Szabolcs I (2019) Soil salinity and sodicity as particular plant/crop stress factors. In: Pessarakli M (ed) Handbook of plant and crop stress, 4th edn. CRC Press, Taylor & Francis Group, Boca Raton, pp 3–21
Phukan UJ, Jeena GS, Shukla RK (2016) WRKY transcription factors: molecular regulation and stress responses in plants. Front Plant Sci 7:760
pubmed: 27375634 pmcid: 4891567 doi: 10.3389/fpls.2016.00760
R Core Team (2021) R: a language and environment for statistical computing. The R foundation. Viena, Austria. https://www.R-project.org
Ranty B, Aldon D, Cotelle V, Galaud J-P, Thuleau P, Mazars C (2016) Calcium sensors as key hubs in plant responses to biotic and abiotic stresses. Front Plant Sci 7:327
pubmed: 27014336 pmcid: 4792864 doi: 10.3389/fpls.2016.00327
Reddy ASN, Ali GS, Celesnik H, Day IS (2011) Coping with stresses: roles of calcium- and calcium/calmodulin-regulated gene expression. Plant Cell 23:2010–2032
pubmed: 21642548 pmcid: 3159525 doi: 10.1105/tpc.111.084988
Roy SJ, Negrão S, Tester M (2014) Salt resistant crop plants. Curr Opin Biotechnol 26:115–124
pubmed: 24679267 doi: 10.1016/j.copbio.2013.12.004
Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
pubmed: 3447015
Sanyal SK, Mahiwal S, Pandey GK (2019) Calcium signaling: a communication network that regulates cellular processes. In: Sopory S (ed) Sensory biology of plants. Springer, Singapore, pp 279–309
doi: 10.1007/978-981-13-8922-1_11
Schneider M, Shrestha A, Ballvora A, Léon J (2022) High-throughput estimation of allele frequencies using combined pooled-population sequencing and haplotype-based data processing. Plant Methods 18:34
pubmed: 35313910 pmcid: 8935755 doi: 10.1186/s13007-022-00852-8
Schwarte S, Bauwe H (2007) Identification of the photorespiratory 2-phosphoglycolate phosphatase, PGLP1, in Arabidopsis. Plant Physiol 144:1580–1586
pubmed: 17478634 pmcid: 1914141 doi: 10.1104/pp.107.099192
Seifikalhor M, Aliniaeifard S, Shomali A, Azad N, Hassani B, Lastochkina O, Li T (2019) Calcium-signaling and salt tolerance are diversely entwined in plants. Plant Signal Behav 14:1665455
pubmed: 31564206 pmcid: 6804723 doi: 10.1080/15592324.2019.1665455
Shen J, Zhang J, Zhou M, Zhou H, Cui B, Gotor C, Romero LC, Fu L, Yang J, Foyer CH, Pan Q, Shen W, Xie Y (2020) Persulfidation-based modification of cysteine desulfhydrase and the NADPH oxidase RBOHD controls guard cell abscisic acid signaling. Plant Cell 32:1000–1017
pubmed: 32024687 pmcid: 7145499 doi: 10.1105/tpc.19.00826
Shi X, Ling H-Q (2018) Current advances in genome sequencing of common wheat and its ancestral species. Crop J 6:15–21
doi: 10.1016/j.cj.2017.11.001
Shi S, Li S, Asim M, Mao J, Xu D, Ullah Z, Liu G, Wang Q, Liu H (2018) The Arabidopsis calcium-dependent protein kinases (CDPKs) and their roles in plant growth regulation and abiotic stress responses. Int J Mol Sci 19:1900
pubmed: 29958430 pmcid: 6073581 doi: 10.3390/ijms19071900
Shi Y, Chang Y-L, Wu H-T, Shalmani A, Liu W-T, Li W-Q, Xu J-W, Chen K-M (2020) OsRbohB-mediated ROS production plays a crucial role in drought stress tolerance of rice. Plant Cell Rep 39:1767–1784
pubmed: 32980968 doi: 10.1007/s00299-020-02603-2
Suzuki N, Miller G, Morales J, Shulaev V, Torres MA, Mittler R (2011) Respiratory burst oxidases: the engines of ROS signaling. Curr Opi Plant Biol 14:691–699
doi: 10.1016/j.pbi.2011.07.014
Szklarczyk D, Kirsch R, Koutrouli M, Nastou K, Mehryary F, Hachilif R, Gable AL, Fang T, Doncheva NT, Pyysalo S, Bork P, Jensen LJ, von Mering C (2023) The STRING database in 2023: protein–protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res 51:D638–D646
pubmed: 36370105 doi: 10.1093/nar/gkac1000
Tuteja N (2007) Mechanisms of high salinity tolerance in plants. In: Häussinger D, Sies H (eds) Methods in enzymology. Academic Press, Boca Raton, pp 419–438
Varshney RK, Bohra A, Roorkiwal M, Barmukh R, Cowling WA, Chitikineni A, Lam H-M, Hickey LT, Croser JS, Bayer PE, Edwards D, Crossa J, Weckwerth W, Millar H, Kumar A, Bevan MW, Siddique KHM (2021) Fast-forward breeding for a food-secure world. Trends Genet 37:1124–1136
pubmed: 34531040 doi: 10.1016/j.tig.2021.08.002
Võsa U, Esko T, Kasela S, Annilo T (2015) Altered gene expression associated with microRNA binding site polymorphisms. PLoS ONE 10:e0141351
pubmed: 26496489 pmcid: 4619707 doi: 10.1371/journal.pone.0141351
Walkowiak S, Gao L, Monat C, Haberer G, Kassa MT, Brinton J, Ramirez-Gonzalez RH, Kolodziej MC, Delorean E, Thambugala D, Klymiuk V, Byrns B, Gundlach H, Bandi V, Siri JN, Nilsen K, Aquino C, Himmelbach A, Copetti D, Ban T, Venturini L, Bevan M, Clavijo B, Koo D-H, Ens J, Wiebe K, N’Diaye A, Fritz AK, Gutwin C, Fiebig A, Fosker C, Fu BX, Accinelli GG, Gardner KA, Fradgley N, Gutierrez-Gonzalez J, Halstead-Nussloch G, Hatakeyama M, Koh CS, Deek J, Costamagna AC, Fobert P, Heavens D, Kanamori H, Kawaura K, Kobayashi F, Krasileva K, Kuo T, McKenzie N, Murata K, Nabeka Y, Paape T, Padmarasu S, Percival-Alwyn L, Kagale S, Scholz U, Sese J, Juliana P, Singh R, Shimizu-Inatsugi R, Swarbreck D, Cockram J, Budak H, Tameshige T, Tanaka T, Tsuji H, Wright J, Wu J, Steuernagel B, Small I, Cloutier S, Keeble-Gagnère G, Muehlbauer G, Tibbets J, Nasuda S, Melonek J, Hucl PJ, Sharpe AG, Clark M, Legg E, Bharti A, Langridge P, Hall A, Uauy C, Mascher M, Krattinger SG, Handa H, Shimizu KK, Distelfeld A, Chalmers K, Keller B, Mayer KFX, Poland J, Stein N, McCartney CA, Spannagl M, Wicker T, Pozniak CJ (2020) Multiple wheat genomes reveal global variation in modern breeding. Nature 588:277–283
pubmed: 33239791 pmcid: 7759465 doi: 10.1038/s41586-020-2961-x
Wan S, Wang W, Zhou T, Zhang Y, Chen J, Xiao B, Yang Y, Yu Y (2018) Transcriptomic analysis reveals the molecular mechanisms of Camellia sinensis in response to salt stress. Plant Growth Regul 84:481–492
doi: 10.1007/s10725-017-0354-4
Wang B, Sun Y-F, Song N, Wei J-P, Wang X-J, Feng H, Yin Z-Y, Kang Z-S (2014) MicroRNAs involving in cold, wounding and salt stresses in Triticum aestivum L. Plant Physiol Biochem 80:90–96
pubmed: 24735552 doi: 10.1016/j.plaphy.2014.03.020
Wang Y, Tiwari VK, Rawat N, Gill BS, Huo N, You FM, Coleman-Derr D, Gu YQ (2016) GSP: a web-based platform for designing genome-specific primers in polyploids. Bioinformatics 32:2382–2383
pubmed: 27153733 doi: 10.1093/bioinformatics/btw134
Wingler A, Lea PJ, Quick WP, Leegood RC (2000) Photorespiration: metabolic pathways and their role in stress protection. Philos Trans R Soc Lond B 355:1517–1529
doi: 10.1098/rstb.2000.0712
Xie Z, Nolan TM, Jiang H, Yin Y (2019) AP2/ERF transcription factor regulatory networks in hormone and abiotic stress responses in arabidopsis. Front Plant Sci 10:228
pubmed: 30873200 pmcid: 6403161 doi: 10.3389/fpls.2019.00228
Xiong H, Guo H, Xie Y, Zhao L, Gu J, Zhao S, Li J, Liu L (2017) RNAseq analysis reveals pathways and candidate genes associated with salinity tolerance in a spaceflight-induced wheat mutant. Sci Rep 7:2731
pubmed: 28578401 pmcid: 5457441 doi: 10.1038/s41598-017-03024-0
Yip-Delormel T, Boudsocq M (2019) Properties and functions of calcium-dependent protein kinases and their relatives in Arabidopsis thaliana. New Phytol 224:585–604
pubmed: 31369160 doi: 10.1111/nph.16088
Zandalinas SI, Sengupta S, Burks D, Azad RK, Mittler R (2019) Identification and characterization of a core set of ROS wave-associated transcripts involved in the systemic acquired acclimation response of Arabidopsis to excess light. Plant J 98:126–141
pubmed: 30556340 pmcid: 6850305 doi: 10.1111/tpj.14205
Zhao Y, Ma R, Xu D, Bi H, Xia Z, Peng H (2019) Genome-wide identification and analysis of the AP2 transcription factor gene family in wheat (Triticum aestivum L.). Front Plant Sci 10:1286
pubmed: 31681381 pmcid: 6797823 doi: 10.3389/fpls.2019.01286
Zheng Y, Xu X, Li Z, Yang X, Zhang C, Li F, Jiang G (2009) Differential responses of grain yield and quality to salinity between contrasting winter wheat cultivars. Seed Sci Biotechnol 3:40–43
Zhu T, Wang L, Rimbert H, Rodriguez JC, Deal KR, De Oliveira R, Choulet F, Keeble-Gagnère G, Tibbits J, Rogers J, Eversole K, Appels R, Gu YQ, Mascher M, Dvorak J, Luo M-C (2021) Optical maps refine the bread wheat Triticum aestivum cv. Chinese spring genome assembly. Plant J 107:303–314
pubmed: 33893684 pmcid: 8360199 doi: 10.1111/tpj.15289

Auteurs

Diana Duarte-Delgado (D)

INRES-Plant Breeding, University of Bonn, Bonn, Germany.
Research Group of Genetics of Agronomic Traits, Faculty of Agricultural Sciences, National University of Colombia, Bogotá, Colombia.
Bean Program, Crops for Nutrition and Health, Alliance Bioversity International & International Center for Tropical Agriculture (CIAT), Cali, Colombia.

Inci Vogt (I)

INRES-Plant Breeding, University of Bonn, Bonn, Germany.

Said Dadshani (S)

INRES-Plant Breeding, University of Bonn, Bonn, Germany.

Jens Léon (J)

INRES-Plant Breeding, University of Bonn, Bonn, Germany.

Agim Ballvora (A)

INRES-Plant Breeding, University of Bonn, Bonn, Germany. ballvora@uni-bonn.de.

Articles similaires

Populus Soil Microbiology Soil Microbiota Fungi
Amaryllidaceae Alkaloids Lycoris NADPH-Ferrihemoprotein Reductase Gene Expression Regulation, Plant Plant Proteins
Drought Resistance Gene Expression Profiling Gene Expression Regulation, Plant Gossypium Multigene Family
Arabidopsis Arabidopsis Proteins Osmotic Pressure Cytoplasm RNA, Messenger

Classifications MeSH