Prokaryotic taxonomy and nomenclature in the age of big sequence data.
Journal
The ISME journal
ISSN: 1751-7370
Titre abrégé: ISME J
Pays: England
ID NLM: 101301086
Informations de publication
Date de publication:
07 2021
07 2021
Historique:
received:
25
09
2020
accepted:
11
02
2021
revised:
09
02
2021
pubmed:
8
4
2021
medline:
6
8
2021
entrez:
7
4
2021
Statut:
ppublish
Résumé
The classification of life forms into a hierarchical system (taxonomy) and the application of names to this hierarchy (nomenclature) is at a turning point in microbiology. The unprecedented availability of genome sequences means that a taxonomy can be built upon a comprehensive evolutionary framework, a longstanding goal of taxonomists. However, there is resistance to adopting a single framework to preserve taxonomic freedom, and ever increasing numbers of genomes derived from uncultured prokaryotes threaten to overwhelm current nomenclatural practices, which are based on characterised isolates. The challenge ahead then is to reach a consensus on the taxonomic framework and to adapt and scale the existing nomenclatural code, or create a new code, to systematically incorporate uncultured taxa into the chosen framework.
Identifiants
pubmed: 33824426
doi: 10.1038/s41396-021-00941-x
pii: 10.1038/s41396-021-00941-x
pmc: PMC8245423
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
1879-1892Références
Rosselló-Móra R, Whitman WB. Dialogue on the nomenclature and classification of prokaryotes. Syst Appl Microbiol. 2019;42:5–14.
pubmed: 30017185
doi: 10.1016/j.syapm.2018.07.002
Larson JL. Linnaeus and the natural method. Isis. 1967;58:304–20.
doi: 10.1086/350265
Rosselló-Móra R, Amann R. Past and future species definitions for Bacteria and Archaea. Syst Appl Microbiol. 2015;38:209–16.
pubmed: 25747618
doi: 10.1016/j.syapm.2015.02.001
Thewissen JGM, Cooper LN, Clementz MT, Bajpai S, Tiwari BN. Whales originated from aquatic artiodactyls in the Eocene epoch of India. Nature. 2007;450:1190–4.
pubmed: 18097400
doi: 10.1038/nature06343
Oren A, Garrity GM. Then and now: a systematic review of the systematics of prokaryotes in the last 80 years. Antonie van Leeuwenhoek. 2014;106:43–56.
pubmed: 24306768
doi: 10.1007/s10482-013-0084-1
Woese CR. There must be a prokaryote somewhere: microbiology’s search for itself. Microbiol Rev. 1994;58:1–9.
pubmed: 8177167
pmcid: 372949
doi: 10.1128/mr.58.1.1-9.1994
Rappé MS, Giovannoni SJ. The uncultured microbial majority. Annu Rev Microbiol. 2003;57:369–94.
pubmed: 14527284
doi: 10.1146/annurev.micro.57.030502.090759
Rinke C, Schwientek P, Sczyrba A, Ivanova NN, Anderson IJ, Cheng J-F, et al. Insights into the phylogeny and coding potential of microbial dark matter. Nature. 2013;499:431–7.
pubmed: 23851394
doi: 10.1038/nature12352
Parks DH, Chuvochina M, Chaumeil P-A, Rinke C, Mussig AJ, Hugenholtz P. A complete domain-to-species taxonomy for Bacteria and Archaea. Nat Biotechnol. 2020;38:1079–86.
pubmed: 32341564
doi: 10.1038/s41587-020-0501-8
Vandamme P, Pot B, Gillis M, De Vos P, Kersters K, Swings J. Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev. 1996;60:407–38.
pubmed: 8801440
pmcid: 239450
doi: 10.1128/mr.60.2.407-438.1996
Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W, Schleifer K-H, et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol. 2014;12:635–45.
pubmed: 25118885
doi: 10.1038/nrmicro3330
Mayr E. Biological classification: toward a synthesis of opposing methodologies. Science. 1981;214:510–6.
pubmed: 17838387
doi: 10.1126/science.214.4520.510
Bergey DH, Harrison FC, Breed RS, Hammer BW, Huntoon FM. Bergey’s manual of determinative bacteriology. 1st ed. Baltimore: Williams & Wilkins Co.; 1923.
Sneath PHA, Sokal RR. Numerical taxonomy. Nature. 1962;193:855–60.
pubmed: 13914561
doi: 10.1038/193855a0
Sokal RR. Numerical taxonomy. Sci Am. 1966;215:106–17.
doi: 10.1038/scientificamerican1266-106
Sneath PHA, Sokal RR. Numerical taxonomy. The principles and practice of numerical classification. San Francisco: W. H. Freeman and Co.; 1973.
Stanier RY, van Niel CB. The main outlines of bacterial classification. J Bacteriol. 1941;42:437–66.
pubmed: 16560462
pmcid: 374769
doi: 10.1128/jb.42.4.437-466.1941
van Niel CB. The classification and natural relationships of bacteria. In: Cold Spring Harbor Symposia on Quantitative Biology. New York: Cold Spring Harbor Laboratory Press; 1946. p. 285–301.
Stanier RY, van Niel CB. The concept of a bacterium. Arch Mikrobiol. 1962;42:17–35.
pubmed: 13916221
doi: 10.1007/BF00425185
Zuckerkandl E, Pauling L. Molecules as documents of evolutionary history. J Theor Biol. 1965;8:357–66.
pubmed: 5876245
doi: 10.1016/0022-5193(65)90083-4
Woese CR, Fox GE. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci USA. 1977;74:5088–90.
pubmed: 270744
pmcid: 432104
doi: 10.1073/pnas.74.11.5088
Lane DJ, Pace B, Olsen GJ, Stahl DA, Sogin ML, Pace NR. Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci USA. 1985;82:6955–9.
pubmed: 2413450
pmcid: 391288
doi: 10.1073/pnas.82.20.6955
Olsen GJ, Woese CR. Ribosomal RNA: a key to phylogeny. FASEB J. 1993;7:113–23.
pubmed: 8422957
doi: 10.1096/fasebj.7.1.8422957
Woese CR. Bacterial evolution. Microbiol Rev. 1987;51:221–71.
pubmed: 2439888
pmcid: 373105
doi: 10.1128/mr.51.2.221-271.1987
Schildkraut CL, Marmur J, Doty P. The formation of hybrid DNA molecules and their use in studies of DNA homologies. J Mol Biol. 1961;3:595–617.
pubmed: 14498380
doi: 10.1016/S0022-2836(61)80024-7
McCarthy BJ, Bolton ET. An approach to the measurement of genetic relatedness among organisms. Proc Natl Acad Sci USA. 1963;50:156–64.
pubmed: 13932048
pmcid: 300669
doi: 10.1073/pnas.50.1.156
Marmur J, Doty P. Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol. 1962;5:109–18.
pubmed: 14470099
doi: 10.1016/S0022-2836(62)80066-7
Owen RJ, Hill LR, Lapage SP. Determination of DNA base compositions from melting profiles in dilute buffers. Biopolymers. 1969;7:503–16.
pubmed: 5785241
doi: 10.1002/bip.1969.360070408
Schwartz DC, Saffran W, Welsh J, Haas R, Goldenberg M, Cantor CR. New techniques for purifying large DNAs and studying their properties and packaging. Cold Spring Harb Symp Quant Biol. 1983;47:189–95.
pubmed: 6222863
doi: 10.1101/SQB.1983.047.01.024
Schwartz DC, Cantor CR. Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis. Cell. 1984;37:67–75.
pubmed: 6373014
doi: 10.1016/0092-8674(84)90301-5
Maiden MCJ, Bygraves JA, Feil E, Morelli G, Russell JE, Urwin R, et al. Multilocus sequence typing: A portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci USA. 1998;95:3140–5.
pubmed: 9501229
pmcid: 19708
doi: 10.1073/pnas.95.6.3140
Enright MC, Spratt BG. Multilocus sequence typing. Trends Microbiol. 1999;7:482–7.
pubmed: 10603483
doi: 10.1016/S0966-842X(99)01609-1
Gevers D, Cohan FM, Lawrence JG, Spratt BG, Coenye T, Feil EJ, et al. Re-evaluating prokaryotic species. Nat Rev Microbiol. 2005;3:733–9.
pubmed: 16138101
doi: 10.1038/nrmicro1236
Thompson FL, Gevers D, Thompson CC, Dawyndt P, Naser S, Hoste B, et al. Phylogeny and molecular identification of Vibrios on the basis of multilocus sequence analysis. Appl Environ Microbiol. 2005;71:5107–15.
pubmed: 16151093
pmcid: 1214639
doi: 10.1128/AEM.71.9.5107-5115.2005
Evans PN, Boyd JA, Leu AO, Woodcroft BJ, Parks DH, Hugenholtz P, et al. An evolving view of methane metabolism in the Archaea. Nat Rev Microbiol. 2019;17:219–32.
pubmed: 30664670
doi: 10.1038/s41579-018-0136-7
Amann RI, Ludwig W, Schleifer KH. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev. 1995;59:143–69.
pubmed: 7535888
pmcid: 239358
doi: 10.1128/mr.59.1.143-169.1995
Giovannoni SJ, Britschgi TB, Moyer CL, Field G. Genetic diversity in Sargasso Sea bacterioplankton. Nature. 1990;345:60–63.
pubmed: 2330053
doi: 10.1038/345060a0
Ronaghi M, Uhlén M, Nyrén P. A sequencing method based on real-time pyrophosphate. Science. 1998;281:363–5.
pubmed: 9705713
doi: 10.1126/science.281.5375.363
Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM, Neal PR, et al. Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci USA. 2006;103:12115–20.
pubmed: 16880384
pmcid: 1524930
doi: 10.1073/pnas.0605127103
Andersson AF, Lindberg M, Jakobsson H, Bäckhed F, Nyrén P, Engstrand L. Comparative analysis of human gut microbiota by barcoded pyrosequencing. PLoS ONE. 2008;3:e2836.
pubmed: 18665274
pmcid: 2475661
doi: 10.1371/journal.pone.0002836
Garrity GM, Boone DR, Castenholtz RW. Bergey’s manual of systematic bacteriology, vol. 2. New York: Springer-Verlay; 2001.
Kämpfer P, Glaeser SP. Prokaryotic taxonomy in the sequencing era—the polyphasic approach revisited. Env Microbiol. 2012;14:291–317.
doi: 10.1111/j.1462-2920.2011.02615.x
Konstantinidis KT, Tiedje JM. Towards a genome-based taxonomy for prokaryotes. J Bacteriol. 2005;187:6258–64.
pubmed: 16159757
pmcid: 1236649
doi: 10.1128/JB.187.18.6258-6264.2005
Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil P-A, et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol. 2018;36:996–1004.
pubmed: 30148503
doi: 10.1038/nbt.4229
Murray AE, Freudenstein J, Gribaldo S, Hatzenpichler R, Hugenholtz P, Kämpfer P, et al. Roadmap for naming uncultivated Archaea and Bacteria. Nat Microbiol. 2020;5:987–94.
pubmed: 32514073
pmcid: 7381421
doi: 10.1038/s41564-020-0733-x
Fox GE, Wisotzkey JD, Jurtshuk P Jr. How close Is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int J Syst Bacteriol. 1992;42:166–70.
pubmed: 1371061
doi: 10.1099/00207713-42-1-166
Ciccarelli FD, Doerks T, von Mering C, Creevey CJ, Snel B, Bork P. Toward automatic reconstruction of a highly resolved tree of life. Science. 2006;311:1283–7.
pubmed: 16513982
doi: 10.1126/science.1123061
Johnson JS, Spakowicz DJ, Hong B-Y, Petersen LM, Demkowicz P, Chen L, et al. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat Commun. 2019;10:5029.
pubmed: 31695033
pmcid: 6834636
doi: 10.1038/s41467-019-13036-1
Doolittle WF. Phylogenetic classification and the universal tree. Science. 1999;284:2124–8.
pubmed: 10381871
doi: 10.1126/science.284.5423.2124
Ochman H, Lawrence JG, Groisman EA. Lateral gene transfer and the nature of bacterial innovation. Nature. 2000;405:299–304.
pubmed: 10830951
doi: 10.1038/35012500
Dagan T, Artzy-Randrup Y, Martin W. Modular networks and cumulative impact of lateral transfer in prokaryote genome evolution. Proc Natl Acad Sci USA. 2008;105:10039–44.
pubmed: 18632554
pmcid: 2474566
doi: 10.1073/pnas.0800679105
Sanderson MJ, Purvis A, Henze C. Phylogenetic supertrees: assembling the trees of life. Trends Ecol Evol. 1998;13:105–9.
pubmed: 21238221
doi: 10.1016/S0169-5347(97)01242-1
Daubin V, Gouy M, Perrière G. Bacterial molecular phylogeny using supertree approach. Genome Inform. 2001;12:155–64.
pubmed: 11791234
Bininda-Emonds ORP. The evolution of supertrees. Trends Ecol Evol. 2004;19:315–22.
pubmed: 16701277
doi: 10.1016/j.tree.2004.03.015
Wu M, Eisen JA. A simple, fast, and accurate method of phylogenomic inference. Genome Biol. 2008;9:R151.
pubmed: 18851752
pmcid: 2760878
doi: 10.1186/gb-2008-9-10-r151
de Queiroz A, Gatesy J. The supermatrix approach to systematics. Trends Ecol Evol. 2007;22:34–41.
pubmed: 17046100
doi: 10.1016/j.tree.2006.10.002
Williams TA, Cox CJ, Foster PG, Szöllősi GJ, Embley TM. Phylogenomics provides robust support for a two-domains tree of life. Nat Ecol Evol. 2020;4:138–47.
pubmed: 31819234
doi: 10.1038/s41559-019-1040-x
Zhu Q, Mai U, Pfeiffer W, Janssen S, Asnicar F, Sanders JG, et al. Phylogenomics of 10,575 genomes reveals evolutionary proximity between domains Bacteria and Archaea. Nat Commun. 2019;10:5477.
pubmed: 31792218
pmcid: 6889312
doi: 10.1038/s41467-019-13443-4
Konstantinidis KT, Tiedje JM. Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci USA. 2005;102:2567–72.
pubmed: 15701695
pmcid: 549018
doi: 10.1073/pnas.0409727102
Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol. 2007;57:81–91.
pubmed: 17220447
doi: 10.1099/ijs.0.64483-0
Auch AF, von Jan M, Klenk H-P, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genom Sci. 2010;2:117–34.
doi: 10.4056/sigs.531120
Meier-Kolthoff JP, Klenk H-P, Göker M. Taxonomic use of DNA G+C content and DNA–DNA hybridization in the genomic age. Int J Syst Evol Microbiol. 2014;64:352–6.
pubmed: 24505073
doi: 10.1099/ijs.0.056994-0
Tyson GW, Chapman J, Hugenholtz P, Allen EE, Ram RJ, Richardson PM, et al. Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature. 2004;428:37–43.
pubmed: 14961025
doi: 10.1038/nature02340
Albertsen M, Hugenholtz P, Skarshewski A, Nielsen KL, Tyson GW, Nielsen PH. Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes. Nat Biotechnol. 2013;31:533–8.
pubmed: 23707974
doi: 10.1038/nbt.2579
Chen L-X, Anantharaman K, Shaiber A, Eren AM, Banfield JF. Accurate and complete genomes from metagenomes. Genome Res. 2020;30:315–33.
pubmed: 32188701
pmcid: 7111523
doi: 10.1101/gr.258640.119
Raghunathan A, Ferguson HR, Bornarth CJ, Song W, Driscoll M, Lasken RS, et al. Genomic DNA amplification from a single bacterium. Appl Environ Microbiol. 2005;71:3342–7.
pubmed: 15933038
pmcid: 1151817
doi: 10.1128/AEM.71.6.3342-3347.2005
Marcy Y, Ouverney C, Bik EM, Lösekann T, Ivanova N, Martin HG, et al. Dissecting biological ‘dark matter’ with single-cell genetic analysis of rare and uncultivated TM7 microbes from the human mouth. Proc Natl Acad Sci USA. 2007;104:11889–94.
pubmed: 17620602
pmcid: 1924555
doi: 10.1073/pnas.0704662104
Paez-Espino D, Eloe-Fadrosh EA, Pavlopoulos GA, Thomas AD, Huntemann M, Mikhailova N, et al. Uncovering earth’s virome. Nature. 2016;536:425–30.
pubmed: 27533034
doi: 10.1038/nature19094
Yutin N, Galperin MY. A genomic update on clostridial phylogeny: Gram-negative spore formers and other misplaced clostridia. Environ Microbiol. 2013;15:2631–41.
pubmed: 23834245
pmcid: 4056668
Hugenholtz P, Huber T. Chimeric 16S rDNA sequences of diverse origin are accumulating in the public databases. Int J Syst Evol Microbiol. 2003;53:289–93.
pubmed: 12656186
doi: 10.1099/ijs.0.02441-0
Hugenholtz P, Stackebrandt E. Reclassification of Sphaerobacter thermophilus from the subclass Sphaerobacteridae in the phylum Actinobacteria to the class Thermomicrobia (emended description) in the phylum Chloroflexi (emended description). Int J Syst Evol Microbiol. 2004;54:2049–51.
pubmed: 15545432
doi: 10.1099/ijs.0.03028-0
Gaston KJ, Mound LA. Taxonomy, hypothesis testing and the biodiversity crisis. Proc R Soc Lond Ser B Biol Sci. 1993;251:139–42.
doi: 10.1098/rspb.1993.0020
Linnaeus C. Systema naturae, vol. 1. Holmiae: Impensis Direct. Laurentii Salvii; 1758.
Buchanan RE. Studies in the nomenclature and classification of the bacteria: II. the primary subdivisions of the Schizomycetes. J Bacteriol. 1917;2:155–64.
pubmed: 16558735
pmcid: 378699
doi: 10.1128/jb.2.2.155-164.1917
Buchanan RE, St. John-Brooks R, Breed RS. International bacteriological code of nomenclature. J Bacteriol. 1948;55:287–306.
pubmed: 18902251
doi: 10.1128/jb.55.3.287-306.1948
Parker CT, Tindall BJ, Garrity GM. International Code of Nomenclature of Prokaryotes. Prokaryotic code (2008 revision). Int J Syst Evol Microbiol. 2019;69:S1–S111.
doi: 10.1099/ijsem.0.000778
Buchanan RE. The international code of nomenclature of the bacteria and viruses. Syst Zool. 1959;8:27–39.
doi: 10.2307/2411605
Sneath PHA, McGowan V, Skerman VBD. Approved lists of bacterial names. Int J Syst Evol Microbiol. 1980;30:225–420.
doi: 10.1099/00207713-30-1-225
Ride WD, Cogger HG, Dupuis C, Kraus O, Minelli A, Thompson FC, et al. International code of zoological nomenclature. 4th ed. London: International Trust for Zoological Nomenclature; 1999.
Turland N, Wiersema J, Barrie F, Greuter W, Hawksworth D, Herendeen P, et al. International code of nomenclature for algae, fungi, and plants (Shenzhen Code) adopted by the nineteenth International Botanical Congress Shenzhen, China, July 2017. Regnum vegetabile. Koeltz Botanical Books: Oberreifenberg, Germany; 2018.
Van Regenmortel MHV. 1—Recent developments in the definition and official names of virus species. In: Tibayrenc M, editor. Genetics and evolution of infectious diseases. 2nd ed. London: Elsevier; 2017. p. 1–23.
Siddell SG, Walker PJ, Lefkowitz EJ, Mushegian AR, Dutilh BE, Harrach B, et al. Binomial nomenclature for virus species: a consultation. Arch Virol. 2020;165:519–25.
pubmed: 31797129
doi: 10.1007/s00705-019-04477-6
Greuter W, Hawksworth DL, McNeill J, Mayo MA, Minelli A, Sneath PHA, et al. Draft BioCode: the prospective international rules for the scientific names of organisms. Taxon. 1996;45:349–72.
doi: 10.2307/1224691
Greuter W. On a new BioCode, harmony, and expediency. Taxon. 1996;45:291–4.
doi: 10.2307/1224671
Greuter W, Nicolson DH. Introductory comments on the Draft BioCode, from a botanical point of view. Taxon. 1996;45:343–8.
doi: 10.2307/1224690
Brummitt RK. The BioCode is unnecessary and unwanted. Syst Bot. 1997;22:182–6.
Dubois A. A zoologist’s viewpoint on the Draft BioCode. Bionomina. 2011;3:45–62.
doi: 10.11646/bionomina.3.1.4
Greuter W, Garrity G, Hawksworth DL, Jahn R, Kirk PM, Knapp S, et al. Draft BioCode (2011): principles and rules regulating the naming of organisms. Taxon. 2011;60:201–12.
doi: 10.1002/tax.601019
Cantino DP, Bryant HN, de Queiroz K, Donoghue MJ, Eriksson T, Hillis DM, et al. Species names in phylogenetic nomenclature. Syst Biol. 1999;48:790–807.
pubmed: 12066299
doi: 10.1080/106351599260012
Cantino PD, de Queiroz K. PhyloCode: a phylogenetic code of biological nomenclature. 2000.
de Queiroz K. The PhyloCode and the distinction between taxonomy and nomenclature. Syst Biol. 2006;55:160–2.
pubmed: 16507533
doi: 10.1080/10635150500431221
de Queiroz K, Cantino PD. International code of phylogenetic nomenclature (PhyloCode): a phylogenetic code of biological nomenclature. 1st ed. Ohio: CRC Press; 2020.
Felsenstein J. Inferring phylogenies, vol. 2. Sunderland, Massachusetts: Sinauer associates; 2004.
Gordon DA, Giovannoni SJ. Detection of stratified microbial populations related to Chlorobium and Fibrobacter species in the Atlantic and Pacific oceans. Appl Environ Microbiol. 1996;62:1171–7.
pubmed: 8919778
pmcid: 167883
doi: 10.1128/aem.62.4.1171-1177.1996
Ley RE, Harris JK, Wilcox J, Spear JR, Miller SR, Bebout BM, et al. Unexpected diversity and complexity of the Guerrero Negro hypersaline microbial mat. Appl Environ Microbiol. 2006;72:3685–95.
pubmed: 16672518
pmcid: 1472358
doi: 10.1128/AEM.72.5.3685-3695.2006
Wrighton KC, Thomas BC, Sharon I, Miller CS, Castelle CJ, VerBerkmoes NC, et al. Fermentation, hydrogen, and sulfur metabolism in multiple uncultivated bacterial phyla. Science. 2012;337:1661–5.
pubmed: 23019650
doi: 10.1126/science.1224041
Murray RGE, Stackebrandt E. Taxonomic note: implementation of the provisional status Candidatus for incompletely described procaryotes. Int J Syst Bacteriol. 1995;45:186–7.
pubmed: 7857801
doi: 10.1099/00207713-45-1-186
Murray RGE, Schleifer KH. Taxonomic notes: a proposal for recording the properties of putative taxa of procaryotes. Int J Syst Evol Microbiol. 1994;44:174–6.
Oren A. A plea for linguistic accuracy—also for Candidatus taxa. Int J Syst Evol Microbiol. 2017;67:1085–94.
pubmed: 27926819
doi: 10.1099/ijsem.0.001715
Oren A, Garrity GM, Parker CT, Chuvochina M, Trujillo ME. Lists of names of prokaryotic Candidatus taxa. Int J Syst Evol Microbiol. 2020;70:3956–4042.
pubmed: 32603289
doi: 10.1099/ijsem.0.003789
DeLong EF, Wickham GS, Pace NR. Phylogenetic stains: ribosomal RNA-based probes for the identification of single cells. Science. 1989;243:1360–3.
pubmed: 2466341
doi: 10.1126/science.2466341
Parks DH, Rinke C, Chuvochina M, Chaumeil P-A, Woodcroft BJ, Evans PN, et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat Microbiol. 2017;2:1533–42.
pubmed: 28894102
doi: 10.1038/s41564-017-0012-7
Hatzenpichler R, Krukenberg V, Spietz RL, Jay ZJ. Next-generation physiology approaches to study microbiome function at single cell level. Nat Rev Microbiol. 2020;18:241–56.
pubmed: 32055027
pmcid: 7133793
doi: 10.1038/s41579-020-0323-1
Whitman WB. Genome sequences as the type material for taxonomic descriptions of prokaryotes. Syst Appl Microbiol. 2015;38:217–22.
pubmed: 25769508
doi: 10.1016/j.syapm.2015.02.003
Whitman WB. Modest proposals to expand the type material for naming of prokaryotes. Int J Syst Evol Microbiol. 2016;66:2108–12.
pubmed: 26902077
doi: 10.1099/ijsem.0.000980
Bisgaard M, Christensen H, Clermont D, Dijkshoorn L, Janda JM, Moore ERB, et al. The use of genomic DNA sequences as type material for valid publication of bacterial species names will have severe implications for clinical microbiology and related disciplines. Diagn Microbiol Infect Dis. 2019;95:102–3.
pubmed: 30981555
doi: 10.1016/j.diagmicrobio.2019.03.007
Overmann J, Huang S, Nübel U, Hahnke RL, Tindall BJ. Relevance of phenotypic information for the taxonomy of not-yet-cultured microorganisms. Syst Appl Microbiol. 2019;42:22–9.
pubmed: 30197212
doi: 10.1016/j.syapm.2018.08.009
Konstantinidis KT, Rosselló-Móra R, Amann R. Uncultivated microbes in need of their own taxonomy. ISME J. 2017;11:2399–406.
pubmed: 28731467
pmcid: 5649169
doi: 10.1038/ismej.2017.113
Sutcliffe IC, Dijkshoorn L, Whitman WB, ICSP Executive Board. Minutes of the International Committee on Systematics of Prokaryotes online discussion on the proposed use of gene sequences as type for naming of prokaryotes, and outcome of vote. Int J Syst Evol Microbiol. 2020;70:4416–7.
pubmed: 32628106
pmcid: 7657488
doi: 10.1099/ijsem.0.004303
Louca S, Mazel F, Doebeli M, Parfrey LW. A census-based estimate of Earth’s bacterial and archaeal diversity. PLOS Biol. 2019;17:e3000106.
pubmed: 30716065
pmcid: 6361415
doi: 10.1371/journal.pbio.3000106
Locey KJ, Lennon JT. Scaling laws predict global microbial diversity. Proc Natl Acad Sci USA. 2016;113:5970–5.
pubmed: 27140646
pmcid: 4889364
doi: 10.1073/pnas.1521291113
Parte AC. LPSN—list of prokaryotic names with standing in nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol. 2018;68:1825–9.
pubmed: 29724269
doi: 10.1099/ijsem.0.002786
Pallen MJ, Telatin A, Oren A. The next million names for Archaea and Bacteria. Trends in Microbiol. 2021;29:289–98.
Whitman WB, Oren A, Chuvochina M, da Costa MS, Garrity GM, Rainey FA, et al. Proposal of the suffix –ota to denote phyla. Addendum to ‘Proposal to include the rank of phylum in the International Code of Nomenclature of Prokaryotes’. Int J Syst Evol Microbiol. 2018;68:967–9.
pubmed: 29458499
doi: 10.1099/ijsem.0.002593
Waite DW, Vanwonterghem I, Rinke C, Parks DH, Zhang Y, Takai K, et al. Comparative genomic analysis of the class Epsilonproteobacteria and proposed reclassification to Epsilonbacteraeota (phyl. nov.). Front Microbiol. 2017;8:682.
pubmed: 28484436
pmcid: 5401914
doi: 10.3389/fmicb.2017.00682
Hugenholtz P, Skarshewski A, Parks DH. Genome-based microbial taxonomy coming of age. Cold Spring Harb Perspect Biol. 2016;8:a018085.
pubmed: 26988968
pmcid: 4888819
doi: 10.1101/cshperspect.a018085
Zheng J, Wittouck S, Salvetti E, Franz CMAP, Harris HMB, Mattarelli P, et al. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int J Syst Evol Microbiol. 2020;70:2782–858.
pubmed: 32293557
doi: 10.1099/ijsem.0.004107
Garcia-Pichel F, Zehr JP, Bhattacharya D, Pakrasi HB. What’s in a name? The case of cyanobacteria. J Phycol. 2020;56:1–5.
pubmed: 31618454
doi: 10.1111/jpy.12934
Pridham TG. Nomenclature of bacteria with special reference to the order Actinomycetales. Int J Syst Bacteriol. 1971;21:197–206.
doi: 10.1099/00207713-21-2-197
Oren A, Schink B, Garrity GM. Wanted: microbiologists with basic knowledge of Latin and Greek to join our ‘nomenclature quality control’ team. Int J Syst Evol Microbiol. 2015;65:3761–2.
pubmed: 26653899
doi: 10.1099/ijsem.0.000663
Lan R, Reeves PR. Escherichia coli in disguise: molecular origins of Shigella. Microbes Infect. 2002;4:1125–32.
pubmed: 12361912
doi: 10.1016/S1286-4579(02)01637-4
Oren A, da Costa MS, Garrity GM, Rainey FA, Rosselló-Móra R, Schink B, et al. Proposal to include the rank of phylum in the International Code of Nomenclature of Prokaryotes. Int J Syst Evol Microbiol. 2015;65:4284–7.
pubmed: 26654112
doi: 10.1099/ijsem.0.000664
Olsen GJ, Overbeek R, Larsen N, Marsh TL, McCaughey MJ, Maciukenas MA, et al. The Ribosomal Database Project. Nucleic Acids Res. 1992;20:2199–200.
pubmed: 1598241
pmcid: 333993
doi: 10.1093/nar/20.suppl.2199
Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y, et al. Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res. 2014;42:D633–42.
pubmed: 24288368
doi: 10.1093/nar/gkt1244
Yilmaz P, Parfrey LW, Yarza P, Gerken J, Pruesse E, Quast C, et al. The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks. Nucleic Acids Res. 2013;42:D643–8.
pubmed: 24293649
pmcid: 3965112
doi: 10.1093/nar/gkt1209
Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, et al. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 2007;35:7188–96.
pubmed: 17947321
pmcid: 2175337
doi: 10.1093/nar/gkm864
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.
pubmed: 23193283
doi: 10.1093/nar/gks1219
Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y, Seo H, et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol. 2017;67:1613–7.
pubmed: 28005526
pmcid: 5563544
doi: 10.1099/ijsem.0.001755
McDonald D, Price MN, Goodrich J, Nawrocki EP, DeSantis TZ, Probst A, et al. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 2012;6:610–8.
pubmed: 22134646
doi: 10.1038/ismej.2011.139
DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol. 2006;72:5069–72.
pubmed: 16820507
pmcid: 1489311
doi: 10.1128/AEM.03006-05
McIlroy SJ, Saunders AM, Albertsen M, Nierychlo M, McIlroy B, Hansen AA, et al. MiDAS: the field guide to the microbes of activated sludge. Database. 2015;2015:bav062.
pubmed: 26120139
pmcid: 4483311
doi: 10.1093/database/bav062
McIlroy SJ, Kirkegaard RH, McIlroy B, Nierychlo M, Kristensen JM, Karst SM, et al. MiDAS 2.0: an ecosystem-specific taxonomy and online database for the organisms of wastewater treatment systems expanded for anaerobic digester groups. Database. 2017;2017:bax016.
pmcid: 5467571
doi: 10.1093/database/bax016
Federhen S. The NCBI taxonomy database. Nucleic Acids Res. 2012;40:D136–43.
pubmed: 22139910
doi: 10.1093/nar/gkr1178
Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun. 2019;10:2182.
pubmed: 31097708
pmcid: 6522516
doi: 10.1038/s41467-019-10210-3
Markowitz VM, Korzeniewski F, Palaniappan K, Szeto E, Werner G, Padki A, et al. The integrated microbial genomes (IMG) system. Nucleic Acids Res. 2006;34:D344–8.
pubmed: 16381883
doi: 10.1093/nar/gkj024
Chen I-MA, Chu K, Palaniappan K, Pillay M, Ratner A, Huang J, et al. IMG/M v.5.0: an integrated data management and comparative analysis system for microbial genomes and microbiomes. Nucleic Acids Res. 2018;47:D666–77.
pmcid: 6323987
doi: 10.1093/nar/gky901
Euzéby JP. List of bacterial names with standing in nomenclature: a folder available on the internet. Int J Syst Evol Microbiol. 1997;47:590–2.
doi: 10.1099/00207713-47-2-590
Parte AC, Sardá Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of prokaryotic names with standing in nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol. 2020;70:5607–12.
pubmed: 32701423
pmcid: 7723251
doi: 10.1099/ijsem.0.004332
Garrity GM, Lyons C. Future-proofing biological nomenclature. Omi A J Integr Biol. 2003;7:31–3.
doi: 10.1089/153623103322006562
Ramos V, Morais J, Vasconcelos VM. A curated database of cyanobacterial strains relevant for modern taxonomy and phylogenetic studies. Sci Data. 2017;4:170054.
pubmed: 28440791
pmcid: 5404626
doi: 10.1038/sdata.2017.54
Komarek J, Hauer T. CyanoDB. cz-On-line database of cyanobacterial genera. Word-wide Electronic Publication University of South Bohemia Institute of Botany AS CR. 2011.
Guiry MD, Guiry GM, Morrison L, Rindi F, Miranda SV, Mathieson AC, et al. AlgaeBase: an on-line resource for Algae. Cryptogam Algol. 2014;35:105–15.
doi: 10.7872/crya.v35.iss2.2014.105
Verslyppe B, De Smet W, De Baets B, De Vos P, Dawyndt P. StrainInfo introduces electronic passports for microorganisms. Syst Appl Microbiol. 2014;37:42–50.
pubmed: 24321274
doi: 10.1016/j.syapm.2013.11.002
Rosselló-Mora R, Amann R. The species concept for prokaryotes. FEMS Microbiol Rev. 2001;25:39–67.
pubmed: 11152940
doi: 10.1016/S0168-6445(00)00040-1
Konstantinidis KT, Ramette A, Tiedje JM. The bacterial species definition in the genomic era. Philos Trans R Soc Lond B Biol Sci. 2006;361:1929–40.
pubmed: 17062412
pmcid: 1764935
doi: 10.1098/rstb.2006.1920
Cohan FM. What are bacterial species? Annu Rev Microbiol. 2002;56:457–87.
pubmed: 12142474
doi: 10.1146/annurev.micro.56.012302.160634
Achtman M, Wagner M. Microbial diversity and the genetic nature of microbial species. Nat Rev Microbiol. 2008;6:431–40.
pubmed: 18461076
doi: 10.1038/nrmicro1872
Brenner DJ. Deoxyribonucleic acid reassociation in the taxonomy of enteric bacteria. Int J Syst Bacteriol. 1973;23:298–307.
doi: 10.1099/00207713-23-4-298
Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol. 1987;37:463–4.
doi: 10.1099/00207713-37-4-463
Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol. 1994;44:846–9.
doi: 10.1099/00207713-44-4-846
Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun. 2018;9:5114.
pubmed: 30504855
pmcid: 6269478
doi: 10.1038/s41467-018-07641-9
Olm MR, Crits-Christoph A, Diamond S, Lavy A, Matheus Carnevali PB, Banfield JF. Consistent metagenome-derived metrics verify and delineate bacterial species boundaries. mSystems. 2020;5:e00731–19.
pubmed: 31937678
pmcid: 6967389
doi: 10.1128/mSystems.00731-19
Mayr E. Systematics and the origin of species from the viewpoint of a zoologist. New York: Columbia University Press; 1942.
Bobay L-M, Ochman H. Biological species are universal across life’s domains. Genome Biol Evol. 2017;9:491–501.
pmcid: 5381558
doi: 10.1093/gbe/evx026
Aharon O, Ventura S. The current status of cyanobacterial nomenclature under the “prokaryotic” and the “botanical” code. Antonie van Leeuwenhoek. 2017;110:1257–69.
doi: 10.1007/s10482-017-0848-0
Bonen L, Doolittle WF. Partial sequences of 16S rRNA and the phylogeny of blue-green algae and chloroplasts. Nature. 1976;261:669–73.
pubmed: 819841
doi: 10.1038/261669a0
Fox GE, Stackebrandt E, Hespell RB, Gibson J, Maniloff J, Dyer TA, et al. The phylogeny of prokaryotes. Science. 1980;209:457–63.
pubmed: 6771870
doi: 10.1126/science.6771870
Stanier RY, Sistrom WR, Hansen TA, Whitton BA, Castenholtz RW, Pfennig N, et al. Proposal to place the nomenclature of the cyanobacteria (blue-green algae) under the rules of the International Code of Nomenclature of Bacteria. Int J Syst Evol Microbiol. 1978;28:335–6.
doi: 10.1099/00207713-28-2-335
Ishida T, Watanabe MM, Sugiyama J, Yokota A. Evidence for polyphyletic origin of the members of the orders of Oscillatoriales and Pleurocapsales as determined by 16S rDNA analysis. FEMS Microbiol Lett. 2001;201:79–82.
pubmed: 11445171
doi: 10.1111/j.1574-6968.2001.tb10736.x
Bauersachs T, Miller SR, Gugger M, Mudimu O, Friedl T, Schwark L. Heterocyte glycolipids indicate polyphyly of stigonematalean cyanobacteria. Phytochemistry. 2019;166:112059.
pubmed: 31280092
doi: 10.1016/j.phytochem.2019.112059
Soo RM, Skennerton CT, Sekiguchi Y, Imelfort M, Paech SJ, Dennis PG, et al. An expanded genomic representation of the phylum Cyanobacteria. Genome Biol Evol. 2014;6:1031–45.
pubmed: 24709563
pmcid: 4040986
doi: 10.1093/gbe/evu073
Soo RM, Hemp J, Parks DH, Fischer WW, Hugenholtz P. On the origins of oxygenic photosynthesis and aerobic respiration in Cyanobacteria. Science. 2017;355:1436–40.
pubmed: 28360330
doi: 10.1126/science.aal3794
Soo RM, Hemp J, Hugenholtz P. Evolution of photosynthesis and aerobic respiration in the cyanobacteria. Free Radic Biol Med. 2019;140:200–5.
pubmed: 30930297
doi: 10.1016/j.freeradbiomed.2019.03.029
Nicolson DH. A history of botanical nomenclature. Ann Mo Bot Gard. 1991;78:33–56.
doi: 10.2307/2399589
Tindall BJ, Kämpfer P, Euzéby JP, Oren A. Valid publication of names of prokaryotes according to the rules of nomenclature: past history and current practice. Int J Syst Evol Microbiol. 2006;56:2715–20.
pubmed: 17082418
doi: 10.1099/ijs.0.64780-0