The NIH Somatic Cell Genome Editing program.
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
04 2021
04 2021
Historique:
received:
13
08
2020
accepted:
05
01
2021
entrez:
8
4
2021
pubmed:
9
4
2021
medline:
28
7
2021
Statut:
ppublish
Résumé
The move from reading to writing the human genome offers new opportunities to improve human health. The United States National Institutes of Health (NIH) Somatic Cell Genome Editing (SCGE) Consortium aims to accelerate the development of safer and more-effective methods to edit the genomes of disease-relevant somatic cells in patients, even in tissues that are difficult to reach. Here we discuss the consortium's plans to develop and benchmark approaches to induce and measure genome modifications, and to define downstream functional consequences of genome editing within human cells. Central to this effort is a rigorous and innovative approach that requires validation of the technology through third-party testing in small and large animals. New genome editors, delivery technologies and methods for tracking edited cells in vivo, as well as newly developed animal models and human biological systems, will be assembled-along with validated datasets-into an SCGE Toolkit, which will be disseminated widely to the biomedical research community. We visualize this toolkit-and the knowledge generated by its applications-as a means to accelerate the clinical development of new therapies for a wide range of conditions.
Identifiants
pubmed: 33828315
doi: 10.1038/s41586-021-03191-1
pii: 10.1038/s41586-021-03191-1
pmc: PMC8026397
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
195-204Subventions
Organisme : NIAID NIH HHS
ID : UG3 AI150551
Pays : United States
Organisme : NIAID NIH HHS
ID : U01 AI145965
Pays : United States
Organisme : NINDS NIH HHS
ID : UG3 NS111688
Pays : United States
Organisme : NIBIB NIH HHS
ID : U01 EB028892
Pays : United States
Organisme : NIEHS NIH HHS
ID : U01 ES032673
Pays : United States
Organisme : NINDS NIH HHS
ID : R01 NS076991
Pays : United States
Organisme : NIGMS NIH HHS
ID : R35 GM119644
Pays : United States
Organisme : NIH HHS
ID : P51 OD011106
Pays : United States
Organisme : NIDDK NIH HHS
ID : DP2 DK133821
Pays : United States
Organisme : NIDDK NIH HHS
ID : U01 DK127587
Pays : United States
Organisme : NIDDK NIH HHS
ID : U01 DK127553
Pays : United States
Organisme : NINDS NIH HHS
ID : UH3 NS111688
Pays : United States
Organisme : NHLBI NIH HHS
ID : UH3 HL147352
Pays : United States
Organisme : NIBIB NIH HHS
ID : U01 EB029371
Pays : United States
Organisme : NIBIB NIH HHS
ID : UH3 EB028907
Pays : United States
Organisme : NEI NIH HHS
ID : U01 EY032333
Pays : United States
Organisme : NIBIB NIH HHS
ID : U01 EB028899
Pays : United States
Organisme : NIEHS NIH HHS
ID : P30 ES005605
Pays : United States
Organisme : NHLBI NIH HHS
ID : P01 HL152960
Pays : United States
Organisme : NHLBI NIH HHS
ID : UG3 HL151545
Pays : United States
Organisme : NIBIB NIH HHS
ID : UH2 EB028910
Pays : United States
Organisme : NIH HHS
ID : P51 OD011107
Pays : United States
Organisme : NHLBI NIH HHS
ID : UG3 HL147352
Pays : United States
Organisme : NIDDK NIH HHS
ID : UC2 DK126023
Pays : United States
Organisme : NIH HHS
ID : U42 OD026635
Pays : United States
Organisme : NIH HHS
ID : U42 OD026645
Pays : United States
Organisme : NIDDK NIH HHS
ID : R56 DK122380
Pays : United States
Organisme : NIBIB NIH HHS
ID : UH2 EB028907
Pays : United States
Organisme : NHLBI NIH HHS
ID : UH3 HL147366
Pays : United States
Organisme : NHLBI NIH HHS
ID : U01 HL145792
Pays : United States
Organisme : NIH HHS
ID : S10 OD028713
Pays : United States
Organisme : NHGRI NIH HHS
ID : U24 HG010423
Pays : United States
Organisme : NIH HHS
ID : U42 OD027094
Pays : United States
Organisme : NIBIB NIH HHS
ID : UH3 EB028910
Pays : United States
Références
High, K. A. & Roncarolo, M. G. Gene therapy. N. Engl. J. Med. 381, 455–464 (2019).
pubmed: 31365802
Doudna, J. A. The promise and challenge of therapeutic genome editing. Nature 578, 229–236 (2020).
doi: 10.1038/s41586-020-1978-5
pubmed: 32051598
pmcid: 8992613
Pickar-Oliver, A. & Gersbach, C. A. The next generation of CRISPR–Cas technologies and applications. Nat. Rev. Mol. Cell Biol. 20, 490–507 (2019).
pubmed: 31147612
pmcid: 7079207
Anzalone, A. V., Koblan, L. W. & Liu, D. R. Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nat. Biotechnol. 38, 824–844 (2020).
pubmed: 32572269
Urnov, F. D. et al. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435, 646–651 (2005).
pubmed: 15806097
Smith, J. et al. A combinatorial approach to create artificial homing endonucleases cleaving chosen sequences. Nucleic Acids Res. 34, e149 (2006).
pubmed: 17130168
pmcid: 1702487
Miller, J. C. et al. A TALE nuclease architecture for efficient genome editing. Nat. Biotechnol. 29, 143–148 (2011).
pubmed: 21179091
Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012). This paper, together with reference 9, established the RNA-guided DNA cleavage activity of the Cas9 protein, providing the biochemical basis for CRISPR genome editing.
pubmed: 22745249
pmcid: 6286148
Gasiunas, G., Barrangou, R., Horvath, P. & Siksnys, V. Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc. Natl Acad. Sci. USA 109, E2579–E2586 (2012).
pubmed: 22949671
pmcid: 3465414
Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013). This paper, together with references 11–14, established the genome editing of eukaryotic cells by CRISPR–Cas9.
pubmed: 23287722
pmcid: 3712628
Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).
pubmed: 23287718
pmcid: 3795411
Cho, S. W., Kim, S., Kim, J. M. & Kim, J.-S. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat. Biotechnol. 31, 230–232 (2013).
pubmed: 23360966
Hwang, W. Y. et al. Efficient genome editing in zebrafish using a CRISPR–Cas system. Nat. Biotechnol. 31, 227–229 (2013).
pubmed: 23360964
pmcid: 3686313
Jinek, M. et al. RNA-programmed genome editing in human cells. eLife 2, e00471 (2013).
pubmed: 23386978
pmcid: 3557905
Jiang, W., Bikard, D., Cox, D., Zhang, F. & Marraffini, L. A. RNA-guided editing of bacterial genomes using CRISPR–Cas systems. Nat. Biotechnol. 31, 233–239 (2013).
pubmed: 23360965
pmcid: 3748948
Makarova, K. S. et al. Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants. Nat. Rev. Microbiol. 18, 67–83 (2020).
pubmed: 31857715
Rouet, P., Smih, F. & Jasin, M. Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells. Proc. Natl Acad. Sci. USA 91, 6064–6068 (1994).
pubmed: 8016116
pmcid: 44138
Yeh, C. D., Richardson, C. D. & Corn, J. E. Advances in genome editing through control of DNA repair pathways. Nat. Cell Biol. 21, 1468–1478 (2019).
pubmed: 31792376
Naldini, L., Trono, D. & Verma, I. M. Lentiviral vectors, two decades later. Science 353, 1101–1102 (2016).
pubmed: 27609877
Dominguez, A. A., Lim, W. A. & Qi, L. S. Beyond editing: repurposing CRISPR–Cas9 for precision genome regulation and interrogation. Nat. Rev. Mol. Cell Biol. 17, 5–15 (2016).
pubmed: 26670017
Rees, H. A. & Liu, D. R. Base editing: precision chemistry on the genome and transcriptome of living cells. Nat. Rev. Genet. 19, 770–788 (2018).
pubmed: 30323312
pmcid: 6535181
Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016). CRISPR–Cas9 was fused to a DNA-editing enzyme that enabled targeted nucleotide editing at genome locations recognized by Cas9, while avoiding double-stranded DNA breaks.
pubmed: 27096365
pmcid: 4873371
Gaudelli, N. M. et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 551, 464–471 (2017).
pubmed: 29160308
pmcid: 5726555
Mok, B. Y. et al. A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing. Nature 583, 631–637 (2020). This study, along with references 99–104, describes the development of mitochondrial DNA genome editors.
pubmed: 32641830
pmcid: 7381381
Anzalone, A. V. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149–157 (2019). A CRISPR–Cas9-reverse transcriptase fusion protein, along with an extended guide-RNA template, introduced small sequence changes that include all possible transitions and transversions as well as insertions and deletions.
pubmed: 31634902
pmcid: 6907074
Kearns, N. A. et al. Functional annotation of native enhancers with a Cas9–histone demethylase fusion. Nat. Methods 12, 401–403 (2015). This work, along with reference 27, showed that CRISPR–Cas9 can be fused to a histone-modifying enzyme to enable targeted epigenetic editing.
pubmed: 25775043
pmcid: 4414811
Hilton, I. B. et al. Epigenome editing by a CRISPR–Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat. Biotechnol. 33, 510–517 (2015).
pubmed: 25849900
pmcid: 4430400
Maeder, M. L. & Gersbach, C. A. Genome-editing technologies for gene and cell therapy. Mol. Ther. 24, 430–446 (2016).
pubmed: 26755333
pmcid: 4786923
Porteus, M. H. A new class of medicines through DNA editing. N. Engl. J. Med. 380, 947–959 (2019).
pubmed: 30855744
Li, H. et al. In vivo genome editing restores haemostasis in a mouse model of haemophilia. Nature 475, 217–221 (2011).
pubmed: 21706032
pmcid: 3152293
Amoasii, L. et al. Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy. Science 362, 86–91 (2018).
pubmed: 30166439
pmcid: 6205228
Maeder, M. L. et al. Development of a gene-editing approach to restore vision loss in Leber congenital amaurosis type 10. Nat. Med. 25, 229–233 (2019). This paper described preclinical work for the treatment of inherited retinal disease using a somatic cell genome-editing approach that uses an AAV vector to deliver SauCas9 and guide RNAs to photoreceptor cells by subretinal injection.
pubmed: 30664785
Moretti, A. et al. Somatic gene editing ameliorates skeletal and cardiac muscle failure in pig and human models of Duchenne muscular dystrophy. Nat. Med. 26, 207–214 (2020).
pubmed: 31988462
pmcid: 7212064
Tebas, P. et al. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N. Engl. J. Med. 370, 901–910 (2014).
pubmed: 24597865
pmcid: 4084652
Xu, L. et al. CRISPR-edited stem cells in a patient with HIV and acute lymphocytic leukemia. N. Engl. J. Med. 381, 1240–1247 (2019).
pubmed: 31509667
Stadtmauer, E. A. et al. CRISPR-engineered T cells in patients with refractory cancer. Science 367, eaba7365 (2020).
pubmed: 32029687
Qasim, W. et al. Molecular remission of infant B-ALL after infusion of universal TALEN gene-edited CAR T cells. Sci. Transl. Med. 9, eaaj2013 (2017).
pubmed: 28123068
Chew, W. L. et al. A multifunctional AAV–CRISPR–Cas9 and its host response. Nat. Methods 13, 868–874 (2016). This study, along with references 39–47 and 142, described host immune responses to genome editors or their delivery vectors.
pubmed: 27595405
pmcid: 5374744
Wang, D. et al. Adenovirus-mediated somatic genome editing of Pten by CRISPR/Cas9 in mouse liver in spite of Cas9-specific immune responses. Hum. Gene Ther. 26, 432–442 (2015).
pubmed: 26086867
pmcid: 4509492
Nelson, C. E. et al. Long-term evaluation of AAV-CRISPR genome editing for Duchenne muscular dystrophy. Nat. Med. 25, 427–432 (2019).
pubmed: 30778238
pmcid: 6455975
Wang, L. et al. Meganuclease targeting of PCSK9 in macaque liver leads to stable reduction in serum cholesterol. Nat. Biotechnol. 36, 717–725 (2018).
pubmed: 29985478
Sedic, M. et al. Safety evaluation of lipid nanoparticle-formulated modified mRNA in the Sprague-Dawley rat and cynomolgus monkey. Vet. Pathol. 55, 341–354 (2018).
pubmed: 29191134
Moreno, A. M. et al. Immune-orthogonal orthologues of AAV capsids and of Cas9 circumvent the immune response to the administration of gene therapy. Nat. Biomed. Eng. 3, 806–816 (2019).
pubmed: 31332341
pmcid: 6783354
Charlesworth, C. T. et al. Identification of preexisting adaptive immunity to Cas9 proteins in humans. Nat. Med. 25, 249–254 (2019).
pubmed: 30692695
pmcid: 7199589
Wagner, D. L. et al. High prevalence of Streptococcus pyogenes Cas9-reactive T cells within the adult human population. Nat. Med. 25, 242–248 (2019).
pubmed: 30374197
Ferdosi, S. R. et al. Multifunctional CRISPR–Cas9 with engineered immunosilenced human T cell epitopes. Nat. Commun. 10, 1842 (2019).
pubmed: 31015529
pmcid: 6478683
Li, A. et al. AAV-CRISPR gene editing is negated by pre-existing immunity to Cas9. Mol. Ther. 28, 1432–1441 (2020).
pubmed: 32348718
pmcid: 7264438
Canver, M. C. et al. BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis. Nature 527, 192–197 (2015).
pubmed: 26375006
pmcid: 4644101
Nelson, C. E. et al. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science 351, 403–407 (2016). This study, along with reference 50, demonstrated the feasibility of achieving therapeutically meaningful levels of genome editing in affected tissues in a mouse model of muscular dystrophy.
pubmed: 26721684
Tabebordbar, M. et al. In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science 351, 407–411 (2016).
pubmed: 26721686
Amoasii, L. et al. Single-cut genome editing restores dystrophin expression in a new mouse model of muscular dystrophy. Sci. Transl. Med. 9, eaan8081 (2017).
pubmed: 29187645
pmcid: 5749406
Liu, Z. et al. Highly efficient RNA-guided base editing in rabbit. Nat. Commun. 9, 2717 (2018).
pubmed: 30006570
pmcid: 6045575
Zafra, M. P. et al. Optimized base editors enable efficient editing in cells, organoids and mice. Nat. Biotechnol. 36, 888–893 (2018).
pubmed: 29969439
pmcid: 6130889
Villiger, L. et al. Treatment of a metabolic liver disease by in vivo genome base editing in adult mice. Nat. Med. 24, 1519–1525 (2018).
pubmed: 30297904
Li, Q. et al. CRISPR–Cas9-mediated base-editing screening in mice identifies DND1 amino acids that are critical for primordial germ cell development. Nat. Cell Biol. 20, 1315–1325 (2018).
pubmed: 30275529
Yeh, W.-H., Chiang, H., Rees, H. A., Edge, A. S. B. & Liu, D. R. In vivo base editing of post-mitotic sensory cells. Nat. Commun. 9, 2184 (2018).
pubmed: 29872041
pmcid: 5988727
Zeng, Y. et al. Correction of the Marfan syndrome pathogenic FBN1 mutation by base editing in human cells and heterozygous embryos. Mol. Ther. 26, 2631–2637 (2018).
pubmed: 30166242
pmcid: 6224777
Ryu, S.-M. et al. Adenine base editing in mouse embryos and an adult mouse model of Duchenne muscular dystrophy. Nat. Biotechnol. 36, 536–539 (2018).
pubmed: 29702637
Levy, J. M. et al. Cytosine and adenine base editing of the brain, liver, retina, heart and skeletal muscle of mice via adeno-associated viruses. Nat. Biomed. Eng. 4, 97–110 (2020).
pubmed: 31937940
pmcid: 6980783
Yeh, W.-H. et al. In vivo base editing restores sensory transduction and transiently improves auditory function in a mouse model of recessive deafness. Sci. Transl. Med. 12, eaay9101 (2020).
pubmed: 32493795
pmcid: 8167884
Zeng, J. et al. Therapeutic base editing of human hematopoietic stem cells. Nat. Med. 26, 535–541 (2020).
pubmed: 32284612
pmcid: 7869435
Song, C.-Q. et al. Adenine base editing in an adult mouse model of tyrosinaemia. Nat. Biomed. Eng. 4, 125–130 (2020).
pubmed: 31740768
Sürün, D. et al. Efficient generation and correction of mutations in human iPS cells utilizing mRNAs of CRISPR base editors and prime editors. Genes (Basel) 11, 511 (2020).
Kim, D., Luk, K., Wolfe, S. A. & Kim, J.-S. Evaluating and enhancing target specificity of gene-editing nucleases and deaminases. Annu. Rev. Biochem. 88, 191–220 (2019).
pubmed: 30883196
Gabriel, R. et al. An unbiased genome-wide analysis of zinc-finger nuclease specificity. Nat. Biotechnol. 29, 816 (2011). This study, along with references 133–140 and 143, established empirical methods for genome-wide profiling of off-target modifications.
pubmed: 21822255
Khvorova, A. & Watts, J. K. The chemical evolution of oligonucleotide therapies of clinical utility. Nat. Biotechnol. 35, 238–248 (2017).
pubmed: 28244990
pmcid: 5517098
Perry, M. E., Valdes, K. M., Wilder, E., Austin, C. P. & Brooks, P. J. Genome editing to ‘re-write’ wrongs. Nat. Rev. Drug Discov. 17, 689–690 (2018).
pubmed: 29930285
Esvelt, K. M. et al. Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat. Methods 10, 1116–1121 (2013).
pubmed: 24076762
pmcid: 3844869
Hou, Z. et al. Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis. Proc. Natl Acad. Sci. USA 110, 15644–15649 (2013).
pubmed: 23940360
pmcid: 3785731
Zetsche, B. et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR–Cas system. Cell 163, 759–771 (2015).
pubmed: 26422227
pmcid: 4638220
Ran, F. A. et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature 520, 186–191 (2015).
pubmed: 25830891
pmcid: 4393360
Kim, E. et al. In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni. Nat. Commun. 8, 14500 (2017).
pubmed: 28220790
pmcid: 5473640
Agudelo, D. et al. Versatile and robust genome editing with Streptococcus thermophilus CRISPR1–Cas9. Genome Res. 30, 107–117 (2020).
pubmed: 31900288
pmcid: 6961573
Edraki, A. et al. A compact, high-accuracy Cas9 with a dinucleotide PAM for in vivo genome editing. Mol. Cell 73, 714–726.e4 (2019).
pubmed: 30581144
Hirano, H. et al. Structure and engineering of Francisella novicida Cas9. Cell 164, 950–961 (2016).
pubmed: 26875867
pmcid: 4899972
Harrington, L. B. et al. A thermostable Cas9 with increased lifetime in human plasma. Nat. Commun. 8, 1424 (2017).
pubmed: 29127284
pmcid: 5681539
Chatterjee, P., Jakimo, N. & Jacobson, J. M. Minimal PAM specificity of a highly similar SpCas9 ortholog. Sci. Adv. 4, eaau0766 (2018).
pubmed: 30397647
pmcid: 6200363
Chatterjee, P. et al. A Cas9 with PAM recognition for adenine dinucleotides. Nat. Commun. 11, 2474 (2020).
pubmed: 32424114
pmcid: 7235249
Hu, Z. et al. A compact Cas9 ortholog from Staphylococcus auricularis (SauriCas9) expands the DNA targeting scope. PLoS Biol. 18, e3000686 (2020).
pubmed: 32226015
pmcid: 7145270
Burstein, D. et al. New CRISPR–Cas systems from uncultivated microbes. Nature 542, 237–241 (2017).
pubmed: 28005056
Gupta, A., Bahal, R., Gupta, M., Glazer, P. M. & Saltzman, W. M. Nanotechnology for delivery of peptide nucleic acids (PNAs). J. Control. Release 240, 302–311 (2016).
pubmed: 26776051
pmcid: 5016210
Yan, W. X. et al. Functionally diverse type V CRISPR–Cas systems. Science 363, 88–91 (2019).
pubmed: 30523077
Liu, J.-J. et al. CasX enzymes comprise a distinct family of RNA-guided genome editors. Nature 566, 218–223 (2019); correction 568, E8–E10 (2019).
pubmed: 30718774
pmcid: 6662743
Dolan, A. E. et al. Introducing a spectrum of long-range genomic deletions in human embryonic stem cells using type I CRISPR–Cas. Mol. Cell 74, 936–950.e5 (2019).
pubmed: 30975459
pmcid: 6555677
Strecker, J. et al. RNA-guided DNA insertion with CRISPR-associated transposases. Science 365, 48–53 (2019).
pubmed: 31171706
pmcid: 6659118
Klompe, S. E., Vo, P. L. H., Halpin-Healy, T. S. & Sternberg, S. H. Transposon-encoded CRISPR–Cas systems direct RNA-guided DNA integration. Nature 571, 219–225 (2019).
pubmed: 31189177
Pausch, P. et al. CRISPR–CasΦ from huge phages is a hypercompact genome editor. Science 369, 333–337 (2020).
pubmed: 32675376
pmcid: 8207990
Sakata, R. C. et al. Base editors for simultaneous introduction of C-to-T and A-to-G mutations. Nat. Biotechnol. 38, 865–869 (2020).
pubmed: 32483365
Grünewald, J. et al. A dual-deaminase CRISPR base editor enables concurrent adenine and cytosine editing. Nat. Biotechnol. 38, 861–864 (2020).
pubmed: 32483364
pmcid: 7723518
Zhang, X. et al. Dual base editor catalyzes both cytosine and adenine base conversions in human cells. Nat. Biotechnol. 38, 856–860 (2020).
pubmed: 32483363
Kurt, I. C. et al. CRISPR C-to-G base editors for inducing targeted DNA transversions in human cells. Nat. Biotechnol. 39, 41–46 (2021).
pubmed: 32690971
Zhao, D. et al. Glycosylase base editors enable C-to-A and C-to-G base changes. Nat. Biotechnol. 39, 35–40 (2021).
pubmed: 32690970
Holtzman, L. & Gersbach, C. A. Editing the epigenome: reshaping the genomic landscape. Annu. Rev. Genomics Hum. Genet. 19, 43–71 (2018).
pubmed: 29852072
Zeitler, B. et al. Allele-selective transcriptional repression of mutant HTT for the treatment of Huntington’s disease. Nat. Med. 25, 1131–1142 (2019).
pubmed: 31263285
Black, J. B. & Gersbach, C. A. Synthetic transcription factors for cell fate reprogramming. Curr. Opin. Genet. Dev. 52, 13–21 (2018).
pubmed: 29803990
Economos, N. G. et al. Peptide nucleic acids and gene editing: perspectives on structure and repair. Molecules 25, 735 (2020).
pmcid: 7037966
McNeer, N. A. et al. Nanoparticles that deliver triplex-forming peptide nucleic acid molecules correct F508del CFTR in airway epithelium. Nat. Commun. 6, 6952 (2015).
pubmed: 25914116
Bahal, R. et al. In vivo correction of anaemia in β-thalassemic mice by γPNA-mediated gene editing with nanoparticle delivery. Nat. Commun. 7, 13304 (2016).
pubmed: 27782131
pmcid: 5095181
Gammage, P. A., Moraes, C. T. & Minczuk, M. Mitochondrial genome engineering: the revolution may not be CRISPR-ized. Trends Genet. 34, 101–110 (2018).
pubmed: 29179920
pmcid: 5783712
Minczuk, M., Kolasinska-Zwierz, P., Murphy, M. P. & Papworth, M. A. Construction and testing of engineered zinc-finger proteins for sequence-specific modification of mtDNA. Nat. Protoc. 5, 342–356 (2010).
pubmed: 20134433
Gammage, P. A. et al. Genome editing in mitochondria corrects a pathogenic mtDNA mutation in vivo. Nat. Med. 24, 1691–1695 (2018).
pubmed: 30250142
pmcid: 6225988
Bacman, S. R. et al. MitoTALEN reduces mutant mtDNA load and restores tRNA
pubmed: 30250143
pmcid: 6942693
Hashimoto, M. et al. MitoTALEN: a general approach to reduce mutant mtDNA loads and restore oxidative phosphorylation function in mitochondrial diseases. Mol. Ther. 23, 1592–1599 (2015).
pubmed: 26159306
pmcid: 4817924
Campbell, J. M. et al. Engineering targeted deletions in the mitochondrial genome. Preprint at https://doi.org/10.1101/287342 (2018).
Yin, H., Kauffman, K. J. & Anderson, D. G. Delivery technologies for genome editing. Nat. Rev. Drug Discov. 16, 387–399 (2017).
pubmed: 28337020
Wang, D., Zhang, F. & Gao, G. CRISPR-based therapeutic genome editing: strategies and in vivo delivery by AAV vectors. Cell 181, 136–150 (2020).
pubmed: 32243786
pmcid: 7236621
van Haasteren, J., Li, J., Scheideler, O. J., Murthy, N. & Schaffer, D. V. The delivery challenge: fulfilling the promise of therapeutic genome editing. Nat. Biotechnol. 38, 845–855 (2020).
pubmed: 32601435
Finn, J. D. et al. A single administration of CRISPR/Cas9 lipid nanoparticles achieves robust and persistent in vivo genome editing. Cell Rep. 22, 2227–2235 (2018). Nonviral, systemic, lipid nanoparticle-based delivery of mRNA-encoded Cas9 and sgRNAs provided therapeutically relevant levels of genome editing in the liver in mice.
pubmed: 29490262
Wei, T., Cheng, Q., Min, Y.-L., Olson, E. N. & Siegwart, D. J. Systemic nanoparticle delivery of CRISPR–Cas9 ribonucleoproteins for effective tissue specific genome editing. Nat. Commun. 11, 3232 (2020).
pubmed: 32591530
pmcid: 7320157
Yin, H. et al. Structure-guided chemical modification of guide RNA enables potent non-viral in vivo genome editing. Nat. Biotechnol. 35, 1179–1187 (2017).
pubmed: 29131148
pmcid: 5901668
Krishnamurthy, S. et al. Engineered amphiphilic peptides enable delivery of proteins and CRISPR-associated nucleases to airway epithelia. Nat. Commun. 10, 4906 (2019).
pubmed: 31659165
pmcid: 6817825
Chen, G. et al. A biodegradable nanocapsule delivers a Cas9 ribonucleoprotein complex for in vivo genome editing. Nat. Nanotechnol. 14, 974–980 (2019).
pubmed: 31501532
pmcid: 6778035
Staahl, B. T. et al. Efficient genome editing in the mouse brain by local delivery of engineered Cas9 ribonucleoprotein complexes. Nat. Biotechnol. 35, 431–434 (2017).
pubmed: 28191903
pmcid: 6649674
Yin, H. et al. Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nat. Biotechnol. 34, 328–333 (2016).
pubmed: 26829318
pmcid: 5423356
Moon, S. B., Kim, D. Y., Ko, J.-H., Kim, J.-S. & Kim, Y.-S. Improving CRISPR genome editing by engineering guide RNAs. Trends Biotechnol. 37, 870–881 (2019).
pubmed: 30846198
Wu, W. et al. Efficient in vivo gene editing using ribonucleoproteins in skin stem cells of recessive dystrophic epidermolysis bullosa mouse model. Proc. Natl Acad. Sci. USA 114, 1660–1665 (2017).
pubmed: 28137859
pmcid: 5321012
Chu, V. T. et al. Increasing the efficiency of homology-directed repair for CRISPR–Cas9-induced precise gene editing in mammalian cells. Nat. Biotechnol. 33, 543–548 (2015).
pubmed: 25803306
Certo, M. T. et al. Tracking genome engineering outcome at individual DNA breakpoints. Nat. Methods 8, 671–676 (2011).
pubmed: 21743461
pmcid: 3415300
Iwano, S. et al. Single-cell bioluminescence imaging of deep tissue in freely moving animals. Science 359, 935–939 (2018).
pubmed: 29472486
Penheiter, A. R., Russell, S. J. & Carlson, S. K. The sodium iodide symporter (NIS) as an imaging reporter for gene, viral, and cell-based therapies. Curr. Gene Ther. 12, 33–47 (2012).
pubmed: 22263922
pmcid: 3367315
Minn, I. et al. Imaging CAR T cell therapy with PSMA-targeted positron emission tomography. Sci. Adv. 5, eaaw5096 (2019).
pubmed: 31281894
pmcid: 6609218
Bulte, J. W. M. Superparamagnetic iron oxides as MPI tracers: A primer and review of early applications. Adv. Drug Deliv. Rev. 138, 293–301 (2019).
pubmed: 30552918
Pumphrey, A. L. et al. Cardiac chemical exchange saturation transfer MR imaging tracking of cell survival or rejection in mouse models of cell therapy. Radiology 282, 131–138 (2017).
pubmed: 27420900
Huang, J., Lee, C. C. I., Sutcliffe, J. L., Cherry, S. R. & Tarantal, A. F. Radiolabeling rhesus monkey CD34
pubmed: 18384718
Tarantal, A. F. et al. Radiolabeling and in vivo imaging of transplanted renal lineages differentiated from human embryonic stem cells in fetal rhesus monkeys. Mol. Imaging Biol. 14, 197–204 (2012).
pubmed: 21479709
pmcid: 4224287
Tarantal, A. F., Lee, C. C. I., Kukis, D. L. & Cherry, S. R. Radiolabeling human peripheral blood stem cells for positron emission tomography (PET) imaging in young rhesus monkeys. PLoS ONE 8, e77148 (2013).
pubmed: 24098579
pmcid: 3789702
Tarantal, A. F., Lee, C. C. I., Martinez, M. L., Asokan, A. & Samulski, R. J. Systemic and persistent muscle gene expression in rhesus monkeys with a liver de-targeted adeno-associated virus vector. Hum. Gene Ther. 28, 385–391 (2017).
pubmed: 28125921
pmcid: 5444483
Bulte, J. W. M. et al. Quantitative “hot spot” imaging of transplanted stem cells using superparamagnetic tracers and magnetic particle imaging (MPI). Tomography 1, 91–97 (2015).
pubmed: 26740972
pmcid: 4699415
Tarantal, A. F., Lee, C. C. I., Jimenez, D. F. & Cherry, S. R. Fetal gene transfer using lentiviral vectors: in vivo detection of gene expression by microPET and optical imaging in fetal and infant monkeys. Hum. Gene Ther. 17, 1254–1261 (2006).
pubmed: 17134373
Tarantal, A. F. & Lee, C. C. I. Long-term luciferase expression monitored by bioluminescence imaging after adeno-associated virus-mediated fetal gene delivery in rhesus monkeys (Macaca mulatta). Hum. Gene Ther. 21, 143–148 (2010).
pubmed: 19751148
Meier, S. et al. Non-invasive detection of adeno-associated viral gene transfer using a genetically encoded CEST-MRI reporter gene in the murine heart. Sci. Rep. 8, 4638 (2018).
pubmed: 29545551
pmcid: 5854573
Nyström, N. N. et al. Longitudinal visualization of viable cancer cell intratumoral distribution in mouse models using Oatp1a1-enhanced magnetic resonance imaging. Invest. Radiol. 54, 302–311 (2019).
pubmed: 30672844
Crosetto, N. et al. Nucleotide-resolution DNA double-strand break mapping by next-generation sequencing. Nat. Methods 10, 361–365 (2013).
pubmed: 23503052
pmcid: 3651036
Tsai, S. Q. et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR–Cas nucleases. Nat. Biotechnol. 33, 187–197 (2015).
pubmed: 25513782
Kim, D. et al. Digenome-seq: genome-wide profiling of CRISPR–Cas9 off-target effects in human cells. Nat. Methods 12, 237–243, 1, 243 (2015).
pubmed: 25664545
Tsai, S. Q. et al. CIRCLE-seq: a highly sensitive in vitro screen for genome-wide CRISPR–Cas9 nuclease off-targets. Nat. Methods 14, 607–614 (2017).
pubmed: 28459458
pmcid: 5924695
Cameron, P. et al. Mapping the genomic landscape of CRISPR–Cas9 cleavage. Nat. Methods 14, 600–606 (2017).
pubmed: 28459459
Lazzarotto, C. R. et al. Defining CRISPR–Cas9 genome-wide nuclease activities with CIRCLE-seq. Nat. Protoc. 13, 2615–2642 (2018).
pubmed: 30341435
pmcid: 6512799
Wienert, B. et al. Unbiased detection of CRISPR off-targets in vivo using DISCOVER-Seq. Science 364, 286–289 (2019).
pubmed: 31000663
pmcid: 6589096
Schmid-Burgk, J. L. et al. Highly parallel profiling of Cas9 variant specificity. Mol. Cell 78, 794–800.e8 (2020).
pubmed: 32187529
pmcid: 7370240
Cheng, Y. & Tsai, S. Q. Illuminating the genome-wide activity of genome editors for safe and effective therapeutics. Genome Biol. 19, 226 (2018).
pubmed: 30577870
pmcid: 6303961
Simhadri, V. L. et al. Prevalence of pre-existing antibodies to CRISPR-associated nuclease Cas9 in the USA population. Mol. Ther. Methods Clin. Dev. 10, 105–112 (2018).
pubmed: 30073181
pmcid: 6070699
Lazzarotto, C. R. et al. CHANGE-seq reveals genetic and epigenetic effects on CRISPR–Cas9 genome-wide activity. Nat. Biotechnol. 38, 1317–1327 (2020).
pubmed: 32541958
pmcid: 7652380
Truskey, G. A. Development and application of human skeletal muscle microphysiological systems. Lab Chip 18, 3061–3073 (2018).
pubmed: 30183050
pmcid: 6177290
Wang, J. et al. Engineered skeletal muscles for disease modeling and drug discovery. Biomaterials 221, 119416 (2019).
pubmed: 31419653
pmcid: 7041662
Freedman, L. P., Cockburn, I. M. & Simcoe, T. S. The economics of reproducibility in preclinical research. PLoS Biol. 13, e1002165 (2015).
pubmed: 26057340
pmcid: 4461318
Plant, A. L., Locascio, L. E., May, W. E. & Gallagher, P. D. Improved reproducibility by assuring confidence in measurements in biomedical research. Nat. Methods 11, 895–898 (2014).
pubmed: 25166868
Plant, A. L. et al. How measurement science can improve confidence in research results. PLoS Biol. 16, e2004299 (2018).
pubmed: 29684013
pmcid: 5933802
The ENCODE Project Consortium. The ENCODE (ENCyclopedia Of DNA Elements) Project. Science 306, 636–640 (2004).
Brown, J. B. & Celniker, S. E. Lessons from modENCODE. Annu. Rev. Genomics Hum. Genet. 16, 31–53 (2015).
pubmed: 26133010
Stunnenberg, H. G. & Hirst, M. The International Human Epigenome Consortium: a blueprint for scientific collaboration and discovery. Cell 167, 1145–1149 (2016).
pubmed: 27863232
Dekker, J. et al. The 4D nucleome project. Nature 549, 219–226 (2017).
pubmed: 28905911
pmcid: 5617335
Warren, C. R., Jaquish, C. E. & Cowan, C. A. The NextGen Genetic Association Studies Consortium: a foray into in vitro population genetics. Cell Stem Cell 20, 431–433 (2017).
pubmed: 28388427
HuBMAP Consortium. The human body at cellular resolution: the NIH Human Biomolecular Atlas Program. Nature 574, 187–192 (2019).
Collins, F. & Galas, D. A new five-year plan for the U.S. Human Genome Project. Science 262, 43–46 (1993).
pubmed: 8211127