Influence of motion correction on the visual analysis of cardiac magnetic resonance stress perfusion imaging.
Heart
Magnetic resonance imaging
Perfusion
Journal
Magma (New York, N.Y.)
ISSN: 1352-8661
Titre abrégé: MAGMA
Pays: Germany
ID NLM: 9310752
Informations de publication
Date de publication:
Oct 2021
Oct 2021
Historique:
received:
28
08
2020
accepted:
17
03
2021
revised:
12
02
2021
pubmed:
12
4
2021
medline:
16
10
2021
entrez:
11
4
2021
Statut:
ppublish
Résumé
Image post-processing corrects for cardiac and respiratory motion (MoCo) during cardiovascular magnetic resonance (CMR) stress perfusion. The study analyzed its influence on visual image evaluation. Sixty-two patients with (suspected) coronary artery disease underwent a standard CMR stress perfusion exam during free-breathing. Image post-processing was performed without (non-MoCo) and with MoCo (image intensity normalization; motion extraction with iterative non-rigid registration; motion warping with the combined displacement field). Images were evaluated regarding the perfusion pattern (perfusion deficit, dark rim artifact, uncertain signal loss, and normal perfusion), the general image quality (non-diagnostic, imperfect, good, and excellent), and the reader's subjective confidence to assess the images (not confident, confident, very confident). Fifty-three (non-MoCo) and 52 (MoCo) myocardial segments were rated as 'perfusion deficit', 113 vs. 109 as 'dark rim artifacts', 9 vs. 7 as 'uncertain signal loss', and 817 vs. 824 as 'normal'. Agreement between non-MoCo and MoCo was high with no diagnostic difference per-patient. The image quality of MoCo was rated more often as 'good' or 'excellent' (92 vs. 63%), and the diagnostic confidence more often as "very confident" (71 vs. 45%) compared to non-MoCo. The comparison of perfusion images acquired during free-breathing and post-processed with and without motion correction demonstrated that both methods led to a consistent evaluation of the perfusion pattern, while the image quality and the reader's subjective confidence to assess the images were rated more favorably for MoCo.
Identifiants
pubmed: 33839986
doi: 10.1007/s10334-021-00923-2
pii: 10.1007/s10334-021-00923-2
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
757-766Informations de copyright
© 2021. European Society for Magnetic Resonance in Medicine and Biology (ESMRMB).
Références
Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Chang AR, Cheng S, Das SR, Delling FN, Djousse L, Elkind MSV, Ferguson JF, Fornage M, Jordan LC, Khan SS, Kissela BM, Knutson KL, Kwan TW, Lackland DT, Lewis TT, Lichtman JH, Longenecker CT, Loop MS, Lutsey PL, Martin SS, Matsushita K, Moran AE, Mussolino ME, O’Flaherty M, Pandey A, Perak AM, Rosamond WD, Roth GA, Sampson UKA, Satou GM, Schroeder EB, Shah SH, Spartano NL, Stokes A, Tirschwell DL, Tsao CW, Turakhia MP, VanWagner LB, Wilkins JT, Wong SS, Virani SS, American Heart Association Council on E, Prevention Statistics C, Stroke Statistics S (2019) Heart disease and stroke statistics-2019 update: a report from the American Heart Association. Circulation 139:e56–e528
doi: 10.1161/CIR.0000000000000659
Knuuti J, Wijns W, Saraste A, Capodanno D, Barbato E, Funck-Brentano C, Prescott E, Storey RF, Deaton C, Cuisset T, Agewall S, Dickstein K, Edvardsen T, Escaned J, Gersh BJ, Svitil P, Gilard M, Hasdai D, Hatala R, Mahfoud F, Masip J, Muneretto C, Valgimigli M, Achenbach S, Bax JJ, Group ESCSD (2019) 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur Heart J 41:407
doi: 10.1093/eurheartj/ehz425
von Knobelsdorff-Brenkenhoff F, Schulz-Menger J (2016) Role of cardiovascular magnetic resonance in the guidelines of the European Society of Cardiology. J Cardiovasc Magn Reson 18:6
doi: 10.1186/s12968-016-0225-6
von Knobelsdorff-Brenkenhoff F, Pilz G, Schulz-Menger J (2017) Representation of cardiovascular magnetic resonance in the AHA / ACC guidelines. J Cardiovasc Magn Reson 19:70
doi: 10.1186/s12968-017-0385-z
Moschetti K, Petersen SE, Pilz G, Kwong RY, Wasserfallen JB, Lombardi M, Korosoglou G, Van Rossum AC, Bruder O, Mahrholdt H, Schwitter J (2016) Cost-minimization analysis of three decision strategies for cardiac revascularization: results of the “suspected CAD” cohort of the european cardiovascular magnetic resonance registry. J Cardiovasc Magn Reson 18:3
doi: 10.1186/s12968-015-0222-1
Bruder O, Wagner A, Lombardi M, Schwitter J, van Rossum A, Pilz G, Nothnagel D, Steen H, Petersen S, Nagel E, Prasad S, Schumm J, Greulich S, Cagnolo A, Monney P, Deluigi CC, Dill T, Frank H, Sabin G, Schneider S, Mahrholdt H (2013) European Cardiovascular Magnetic Resonance (EuroCMR) registry–multi national results from 57 centers in 15 countries. J Cardiovasc Magn Reson 15:9
doi: 10.1186/1532-429X-15-9
Greenwood JP, Maredia N, Younger JF, Brown JM, Nixon J, Everett CC, Bijsterveld P, Ridgway JP, Radjenovic A, Dickinson CJ, Ball SG, Plein S (2012) Cardiovascular magnetic resonance and single-photon emission computed tomography for diagnosis of coronary heart disease (CE-MARC): a prospective trial. Lancet 379:453–460
doi: 10.1016/S0140-6736(11)61335-4
Nagel E, Greenwood JP, McCann GP, Bettencourt N, Shah AM, Hussain ST, Perera D, Plein S, Bucciarelli-Ducci C, Paul M, Westwood MA, Marber M, Richter WS, Puntmann VO, Schwenke C, Schulz-Menger J, Das R, Wong J, Hausenloy DJ, Steen H, Berry C, Investigators M-I (2019) Magnetic resonance perfusion or fractional flow reserve in coronary disease. N Engl J Med 380:2418–2428
doi: 10.1056/NEJMoa1716734
Schulz-Menger J, Bluemke DA, Bremerich J, Flamm SD, Fogel MA, Friedrich MG, Kim RJ, von Knobelsdorff-Brenkenhoff F, Kramer CM, Pennell DJ, Plein S, Nagel E (2020) Standardized image interpretation and post-processing in cardiovascular magnetic resonance—2020 update : Society for Cardiovascular Magnetic Resonance (SCMR): Board of Trustees Task Force on Standardized Post-Processing. J Cardiovasc Magn Reson 22:19
doi: 10.1186/s12968-020-00610-6
Kotecha T, Martinez-Naharro A, Boldrini M, Knight D, Hawkins P, Kalra S, Patel D, Coghlan G, Moon J, Plein S, Lockie T, Rakhit R, Patel N, Xue H, Kellman P, Fontana M (2019) Automated pixel-wise quantitative myocardial perfusion mapping by CMR to detect obstructive coronary artery disease and coronary microvascular dysfunction: validation against invasive coronary physiology. JACC Cardiovasc Imaging 12:1958–1969
doi: 10.1016/j.jcmg.2018.12.022
Hsu LY, Jacobs M, Benovoy M, Ta AD, Conn HM, Winkler S, Greve AM, Chen MY, Shanbhag SM, Bandettini WP, Arai AE (2018) Diagnostic performance of fully automated pixel-wise quantitative myocardial perfusion imaging by cardiovascular magnetic resonance. JACC Cardiovasc Imaging 11:697–707
doi: 10.1016/j.jcmg.2018.01.005
Kim RJ, Simonetti OP, Westwood M, Kramer CM, Narang A, Friedrich MG, Powell AJ, Carr JC, Schulz-Menger J, Nagel E, Chan WS, Bremerich J, Ordovas KG, Rollings RC, Patel AR, Ferrari VA (2018) Guidelines for training in cardiovascular magnetic resonance (CMR). J Cardiovasc Magn Reson 20:57
doi: 10.1186/s12968-018-0481-8
Xue H, Shah S, Greiser A, Guetter C, Littmann A, Jolly MP, Arai AE, Zuehlsdorff S, Guehring J, Kellman P (2012) Motion correction for myocardial T1 mapping using image registration with synthetic image estimation. Magn Reson Med 67:1644–1655
doi: 10.1002/mrm.23153
Xue H, Zuehlsdorff S, Kellman P, Arai A, Nielles-Vallespin S, Chefdhotel C, Lorenz CH, Guehring J (2009) Unsupervised inline analysis of cardiac perfusion MRI. Med Image Comput Comput Assist Interv 12:741–749
pubmed: 20426178
Xue H, Brown LAE, Nielles-Vallespin S, Plein S, Kellman P (2020) Automatic in-line quantitative myocardial perfusion mapping: Processing algorithm and implementation. Magn Reson Med 83:712–730
doi: 10.1002/mrm.27954
Zhou R, Huang W, Yang Y, Chen X, Weller DS, Kramer CM, Kozerke S, Salerno M (2018) Simple motion correction strategy reduces respiratory-induced motion artifacts for k-t accelerated and compressed-sensing cardiovascular magnetic resonance perfusion imaging. J Cardiovasc Magn Reson 20:6
doi: 10.1186/s12968-018-0427-1
Becker KM, Blaszczyk E, Funk S, Nuesslein A, Schulz-Menger J, Schaeffter T, Kolbitsch C (2019) Fast myocardial T1 mapping using cardiac motion correction. Magn Reson Med 83:438
doi: 10.1002/mrm.27935
Pontre B, Cowan BR, DiBella E, Kulaseharan S, Likhite D, Noorman N, Tautz L, Tustison N, Wollny G, Young AA, Suinesiaputra A (2017) An open benchmark challenge for motion correction of myocardial perfusion MRI. IEEE J Biomed Health Inform 21:1315–1326
doi: 10.1109/JBHI.2016.2597145
Wollny G, Kellman P, Santos A, Ledesma-Carbayo MJ (2012) Automatic motion compensation of free breathing acquired myocardial perfusion data by using independent component analysis. Med Image Anal 16:1015–1028
doi: 10.1016/j.media.2012.02.004
Benovoy M, Jacobs M, Cheriet F, Dahdah N, Arai AE, Hsu LY (2017) Robust universal nonrigid motion correction framework for first-pass cardiac MR perfusion imaging. J Magn Reson Imaging 46:1060–1072
doi: 10.1002/jmri.25659
Kramer CM, Barkhausen J, Bucciarelli-Ducci C, Flamm SD, Kim RJ, Nagel E (2020) Standardized cardiovascular magnetic resonance imaging (CMR) protocols: 2020 update. J Cardiovasc Magn Reson 22:17
doi: 10.1186/s12968-020-00607-1
Thirion JP (1998) Image matching as a diffusion process: an analogy with Maxwell’s demons. Med Image Anal 2:243–260
doi: 10.1016/S1361-8415(98)80022-4
Avants BB, Tustison NJ, Stauffer M, Song G, Wu B, Gee JC (2014) The Insight ToolKit image registration framework. Front Neuroinform 8:44
doi: 10.3389/fninf.2014.00044
Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, Pennell DJ, Rumberger JA, Ryan T, Verani MS (2002) Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 105:539–542
doi: 10.1161/hc0402.102975
Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174
doi: 10.2307/2529310
Jerosch-Herold M (2010) Quantification of myocardial perfusion by cardiovascular magnetic resonance. J Cardiovasc Magn Reson 12:57
doi: 10.1186/1532-429X-12-57
Engblom H, Xue H, Akil S, Carlsson M, Hindorf C, Oddstig J, Hedeer F, Hansen MS, Aletras AH, Kellman P, Arheden H (2017) Fully quantitative cardiovascular magnetic resonance myocardial perfusion ready for clinical use: a comparison between cardiovascular magnetic resonance imaging and positron emission tomography. J Cardiovasc Magn Reson 19:78
doi: 10.1186/s12968-017-0388-9
Leiner T, Rueckert D, Suinesiaputra A, Baessler B, Nezafat R, Isgum I, Young AA (2019) Machine learning in cardiovascular magnetic resonance: basic concepts and applications. J Cardiovasc Magn Reson 21:61
doi: 10.1186/s12968-019-0575-y