An ultra-high-affinity small organic ligand of fibroblast activation protein for tumor-targeting applications.
Animals
Cell Line, Tumor
Drug Delivery Systems
/ methods
Endopeptidases
/ chemistry
Fibroblasts
Gene Expression
/ genetics
Gene Expression Regulation, Neoplastic
/ genetics
Isotope Labeling
Ligands
Lutetium
/ chemistry
Male
Membrane Proteins
/ chemistry
Mice
Mice, Nude
Neoplasms
/ metabolism
Quinolines
/ chemistry
Radioisotopes
/ chemistry
Radiopharmaceuticals
Tissue Distribution
/ physiology
Xenograft Model Antitumor Assays
/ methods
FAP
small molecule therapeutics
tumor targeting
Journal
Proceedings of the National Academy of Sciences of the United States of America
ISSN: 1091-6490
Titre abrégé: Proc Natl Acad Sci U S A
Pays: United States
ID NLM: 7505876
Informations de publication
Date de publication:
20 04 2021
20 04 2021
Historique:
entrez:
14
4
2021
pubmed:
15
4
2021
medline:
15
12
2021
Statut:
ppublish
Résumé
We describe the development of OncoFAP, an ultra-high-affinity ligand of fibroblast activation protein (FAP) for targeting applications with pan-tumoral potential. OncoFAP binds to human FAP with affinity in the subnanomolar concentration range and cross-reacts with the murine isoform of the protein. We generated various fluorescent and radiolabeled derivatives of OncoFAP in order to study biodistribution properties and tumor-targeting performance in preclinical models. Fluorescent derivatives selectively localized in FAP-positive tumors implanted in nude mice with a rapid and homogeneous penetration within the neoplastic tissue. Quantitative in vivo biodistribution studies with a lutetium-177-labeled derivative of OncoFAP revealed a preferential localization in tumors at doses of up to 1,000 nmol/kg. More than 30% of the injected dose had already accumulated in 1 g of tumor 10 min after intravenous injection and persisted for at least 3 h with excellent tumor-to-organ ratios. OncoFAP also served as a modular component for the generation of nonradioactive therapeutic products. A fluorescein conjugate mediated a potent and FAP-dependent tumor cell killing activity in combination with chimeric antigen receptor (CAR) T cells specific to fluorescein. Similarly, a conjugate of OncoFAP with the monomethyl auristatin E-based Vedotin payload was well tolerated and cured tumor-bearing mice in combination with a clinical-stage antibody-interleukin-2 fusion. Collectively, these data support the development of OncoFAP-based products for tumor-targeting applications in patients with cancer.
Identifiants
pubmed: 33850024
pii: 2101852118
doi: 10.1073/pnas.2101852118
pmc: PMC8072232
pii:
doi:
Substances chimiques
Ligands
0
Membrane Proteins
0
Quinolines
0
Radioisotopes
0
Radiopharmaceuticals
0
Lutetium
5H0DOZ21UJ
Lutetium-177
BRH40Y9V1Q
quinoline
E66400VT9R
Endopeptidases
EC 3.4.-
fibroblast activation protein alpha
EC 3.4.21.-
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Déclaration de conflit d'intérêts
Competing interest statement: D.N. is a cofounder and shareholder of Philogen (http://www.philogen.com/en/), a Swiss-Italian Biotech company that operates in the field of ligand-based pharmacodelivery. J. Millul, G.B., J. Mock, A.Z., S.D.P., L.N., A.G., E.S., I.B., E.J.D., F.S., and S.C. are employees of Philochem AG, the daughter company of Philogen, acting as the discovery unit of the group.
Références
J Hematol Oncol. 2012 Nov 09;5:70
pubmed: 23140144
J Neurosurg. 2018 Aug;129(2):390-403
pubmed: 28841122
Mol Cancer Ther. 2021 Mar;20(3):512-522
pubmed: 33443104
Oncotarget. 2015 Aug 28;6(25):21533-46
pubmed: 26101914
Drugs. 2019 Jan;79(1):21-42
pubmed: 30560479
Br J Radiol. 2018 Nov;91(1091):20170969
pubmed: 29474096
Clin Cancer Res. 2008 Jul 15;14(14):4584-92
pubmed: 18628473
J Immunol Res. 2016;2016:2342187
pubmed: 27579329
N Engl J Med. 2017 Jan 12;376(2):125-135
pubmed: 28076709
Mol Cell Biol. 2000 Feb;20(3):1089-94
pubmed: 10629066
Mol Pharm. 2015 Jul 6;12(7):2477-83
pubmed: 26043355
J Nucl Med. 2019 Jun;60(6):801-805
pubmed: 30954939
Cancer Res. 2019 Jan 15;79(2):387-396
pubmed: 30482775
J Clin Oncol. 2020 Jan 10;38(2):155-165
pubmed: 31693429
J Nucl Med. 2020 Feb;61(2):163-165
pubmed: 31924719
Mol Cancer Ther. 2012 Feb;11(2):257-66
pubmed: 22323494
Oncology (Williston Park). 2020 Jan 15;34(1):11
pubmed: 32645199
Lancet. 2020 Apr 11;395(10231):1208-1216
pubmed: 32209449
Onkologie. 2003 Feb;26(1):44-8
pubmed: 12624517
J Nucl Med. 2018 Sep;59(9):1415-1422
pubmed: 29626119
Mol Imaging. 2018 Jan-Dec;17:1536012118776068
pubmed: 29873291
J Clin Oncol. 2013 Dec 10;31(35):4400-6
pubmed: 24127448
Clin Cancer Res. 2016 Jun 15;22(12):2929-38
pubmed: 27306792
Nat Rev Drug Discov. 2015 Mar;14(3):203-19
pubmed: 25698644
J Am Chem Soc. 2018 Feb 7;140(5):1617-1621
pubmed: 29342352
Sci Rep. 2020 Feb 24;10(1):3234
pubmed: 32094407
J Nucl Med. 2021 Mar;62(3):360-365
pubmed: 32680925
Proc Natl Acad Sci U S A. 1990 Sep;87(18):7235-9
pubmed: 2402505
Bioconjug Chem. 2016 Jul 20;27(7):1681-9
pubmed: 27248781
Molecules. 2015 Jan 30;20(2):2323-48
pubmed: 25647573
Cancer Immunol Res. 2021 Mar;9(3):279-290
pubmed: 33355188
Angew Chem Int Ed Engl. 2013 Jan 28;52(5):1384-402
pubmed: 23296451
Eur J Haematol. 2019 Sep;103(3):145-151
pubmed: 31166030
Br J Clin Pharmacol. 2001 Feb;51(2):177-80
pubmed: 11259992
J Nucl Med. 2020 Aug;61(8):1171-1177
pubmed: 31836685
Cancer Res. 2012 Apr 1;72(7):1814-24
pubmed: 22392081
Mol Cancer Ther. 2020 Jul;19(7):1385-1394
pubmed: 32398269
Clin Cancer Res. 2002 Sep;8(9):2912-23
pubmed: 12231536
Clin Cancer Res. 2018 Aug 1;24(15):3656-3667
pubmed: 29691298
Bioconjug Chem. 2020 Jul 15;31(7):1775-1783
pubmed: 32515934
Eur J Nucl Med Mol Imaging. 2020 Nov;47(12):2836-2845
pubmed: 32447444
Eur J Med Chem. 2019 Feb 1;163:883-895
pubmed: 30580240
J Nucl Med. 2017 Jan;58(1):151-155
pubmed: 27493266
Clin Cancer Res. 2003 May;9(5):1639-47
pubmed: 12738716
J Clin Oncol. 1994 Jun;12(6):1193-203
pubmed: 8201382
Chem Rev. 2017 Oct 11;117(19):12133-12164
pubmed: 28898067