Exhausting repetitive piano tasks lead to local forearm manifestation of muscle fatigue and negatively affect musical parameters.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
14 04 2021
Historique:
received: 14 10 2020
accepted: 23 03 2021
entrez: 15 4 2021
pubmed: 16 4 2021
medline: 10 11 2021
Statut: epublish

Résumé

Muscle fatigue is considered as a risk factor for developing playing-related muscular disorders among professional pianists and could affect musical performance. This study investigated in 50 pianists the effect of fatiguing repetitive piano sequences on the development of forearm muscle fatigue and on piano performance parameters. Results showed signs of myoelectric manifestation of fatigue in the 42-electromyographic bipolar electrodes positioned on the forearm to record finger and wrist flexor and extensor muscles, through a significant non-constant decrease of instantaneous median frequency during two repetitive Digital (right-hand 16-tones sequence) and Chord (right-hand chords sequence) excerpts, with extensor muscles showing greater signs of fatigue than flexor muscles. In addition, muscle fatigue negatively affected key velocity, a central feature of piano sound intensity, in both Digital and Chord excerpts, and note-events, a fundamental aspect of musicians' performance parameter, in the Chord excerpt only. This result highlights that muscle fatigue may alter differently pianists' musical performance according to the characteristics of the piece played.

Identifiants

pubmed: 33854088
doi: 10.1038/s41598-021-87403-8
pii: 10.1038/s41598-021-87403-8
pmc: PMC8047012
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

8117

Références

Bruno, S., Lorusso, A., Caputo, F., Pranzo, S. & L’Abbate, N. Musculoskeletal disorders in piano students of a conservatory. G Ital. Med. Lav. Ergon. 28, 25–29 (2006).
pubmed: 16705886
Ling, C.-Y., Loo, F.-C. & Hamedon, T. R. Playing-related musculoskeletal disorders among classical piano students at tertiary institutions in malaysia: Proportion and associated risk factors. Med. Probl. Perform. Art. 33, 82–89 (2018).
pubmed: 29868681 doi: 10.21091/mppa.2018.2013
Leaver, R., Harris, E. C. & Palmer, K. T. Musculoskeletal pain in elite professional musicians from British symphony orchestras. Occup. Med. (Lond.) 61, 549–555 (2011).
doi: 10.1093/occmed/kqr129
de Oliveira, C. F. C. & Vezzá, F. M. G. Musicians’ health: Pain resulting from playing musical instruments among members of orchestras of the ABCD region, São Paulo, Brazil. Rev. Bras. Saúde Ocup. 35, 33–40 (2010).
doi: 10.1590/S0303-76572010000100005
Sousa, C. M. G. de. Occupational diseases among professional orchestra musicians from the North of Portugal—treatment with tuina techniques. (2017).
Bragge, P., Bialocerkowski, A. & McMeeken, J. Understanding playing-related musculoskeletal disorders in elite pianists. Med. Probl. Perform. Artists 9, 71–79 (2006).
doi: 10.21091/mppa.2006.2014
Oikawa, N., Tsubota, S., Chikenji, T., Chin, G. & Aoki, M. Wrist positioning and muscle activities in the wrist extensor and flexor during piano playing. Hong Kong J. Occup. Ther. 21, 41–46 (2011).
doi: 10.1016/j.hkjot.2011.06.002
Sakai, N. Hand pain attributed to overuse among professional pianists. Med. Probl. Perform. Art. 17(4), 178–180 (2002).
doi: 10.21091/mppa.2002.4028
Shields, N. The prevalence of injuries among pianists in music schools in Ireland. Med. Probl. Perform. Art. 15(4), 155–160 (2000).
doi: 10.21091/mppa.2000.4030
Cifrek, M., Medved, V., Tonković, S. & Ostojić, S. Surface EMG based muscle fatigue evaluation in biomechanics. Clin. Biomech. 24, 327–340 (2009).
doi: 10.1016/j.clinbiomech.2009.01.010
Farina, D. Interpretation of the surface electromyogram in dynamic contractions. Exerc. Sport Sci. Rev. 34, 121 (2006).
pubmed: 16829739 doi: 10.1249/00003677-200607000-00006
Karthick, P. A., Makaram, N. & Ramakrishnan, S. Analysis of progression of fatigue conditions in biceps brachii muscles using surface electromyography signals and complexity based features. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2014, 3276–3279 (2014).
Venugopal, G., Navaneethakrishna, M. & Ramakrishnan, S. Extraction and analysis of multiple time window features associated with muscle fatigue conditions using sEMG signals. Expert Syst. Appl. 41, 2652–2659 (2014).
doi: 10.1016/j.eswa.2013.11.009
Kollmitzer, J., Ebenbichler, G. R. & Kopf, A. Reliability of surface electromyographic measurements. Clin. Neurophysiol. 110, 725–734 (1999).
pubmed: 10378745 doi: 10.1016/S1388-2457(98)00050-9
Mananas, M. A., Rojas, M., Mandrile, F. & Chaler, J. Evaluation of muscle activity and fatigue in extensor forearm muscles during isometric contractions. in 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference 5824–5827 (2005). https://doi.org/10.1109/IEMBS.2005.1615813 .
Carius, D., Kugler, P., Kuhwald, H.-M. & Wollny, R. Absolute and relative intrasession reliability of surface EMG variables for voluntary precise forearm movements. J. Electromyogr. Kinesiol. 25, 860–869 (2015).
pubmed: 26391454 doi: 10.1016/j.jelekin.2015.09.001
Hashemi Oskouei, A., Paulin, M. G. & Carman, A. B. Intra-session and inter-day reliability of forearm surface EMG during varying hand grip forces. J. Electromyogr. Kinesiol. 23, 216–222 (2013).
pubmed: 22999075 doi: 10.1016/j.jelekin.2012.08.011
Hashemi Oskouei, A. Hand Grip Force, Forearm Surface EMG, and Forearm Surface Dimensional Changes; Their Reliability and Predictive Relationships (University of Otago, 2012).
Gaudet, S., Tremblay, J. & Dal Maso, F. Evolution of muscular fatigue in periscapular and rotator cuff muscles during isokinetic shoulder rotations. J. Sports Sci. 36, 2121–2128 (2018).
pubmed: 29447092 doi: 10.1080/02640414.2018.1440513
Karthick, P. A., Ghosh, D. M. & Ramakrishnan, S. Surface electromyography based muscle fatigue detection using high-resolution time–frequency methods and machine learning algorithms. Comput. Methods Programs Biomed. 154, 45–56 (2018).
pubmed: 29249346 doi: 10.1016/j.cmpb.2017.10.024
Rampichini, S., Vieira, T. M., Castiglioni, P. & Merati, G. Complexity analysis of surface electromyography for assessing the myoelectric manifestation of muscle fatigue: A review. Entropy 22, 529 (2020).
pmcid: 7517022 doi: 10.3390/e22050529
Parent, A. et al. Muscle fatigue during a short walking exercise in children with cerebral palsy who walk in a crouch gait. Gait Posture 72, 22–27 (2019).
pubmed: 31132593 doi: 10.1016/j.gaitpost.2019.05.021
McCarthy, K. C. Detection of Forearm Muscle Fatigue During Piano Playing Using Surface Electromyography (sEMG) Analysis (Carleton University, 2016).
Chong, H. J., Kim, S. J. & Yoo, G. E. Differential effects of type of keyboard playing task and tempo on surface EMG amplitudes of forearm muscles. Front. Psychol. 6, 20 (2015).
doi: 10.3389/fpsyg.2015.01277
Degrave, V., Verdugo, F., Pelletier, J., Traube, C. & Begon, M. Time history of upper-limb muscle activity during isolated piano keystrokes. J. Electromyogr. Kinesiol. 54, 102459 (2020).
pubmed: 32889353 doi: 10.1016/j.jelekin.2020.102459
Birch, L., Juul-Kristensen, B., Jensen, C., Finsen, L. & Christensen, H. Acute response to precision, time pressure and mental demand during simulated computer work. Scand. J. Work Environ. Health 26, 299–305 (2000).
pubmed: 10994795 doi: 10.5271/sjweh.546
Gerard, M. J., Armstrong, T. J., Franzblau, A., Martin, B. J. & Rempel, D. M. The effects of keyswitch stiffness on typing force, finger electromyography, and subjective discomfort. Am. Ind. Hyg. Assoc. J. 60, 762–769 (1999).
pubmed: 10635542 doi: 10.1080/00028899908984499
Lin, M.-I., Liang, H.-W., Lin, K.-H. & Hwang, Y.-H. Electromyographical assessment on muscular fatigue—an elaboration upon repetitive typing activity. J. Electromyogr. Kinesiol. 14, 661–669 (2004).
pubmed: 15491841 doi: 10.1016/j.jelekin.2004.03.004
Gallina, A., Merletti, R. & Vieira, T. M. M. Are the myoelectric manifestations of fatigue distributed regionally in the human medial gastrocnemius muscle?. J. Electromyogr. Kinesiol. 21, 929–938 (2011).
pubmed: 21911301 doi: 10.1016/j.jelekin.2011.08.006
Watanabe, K., Kouzaki, M. & Moritani, T. Region-specific myoelectric manifestations of fatigue in human rectus femoris muscle. Muscle Nerve 48, 226–234 (2013).
pubmed: 23733312 doi: 10.1002/mus.23739
Lapatki, B. G. et al. Topographical characteristics of motor units of the lower facial musculature revealed by means of high-density surface EMG. J. Neurophysiol. 95, 342–354 (2006).
pubmed: 16000526 doi: 10.1152/jn.00265.2005
Marco, G., Alberto, B. & Taian, V. Surface EMG and muscle fatigue: Multi-channel approaches to the study of myoelectric manifestations of muscle fatigue. Physiol. Meas. 38, R27–R60 (2017).
pubmed: 28199218 doi: 10.1088/1361-6579/aa60b9
Staudenmann, D., Kingma, I., Stegeman, D. F. & van Dieën, J. H. Towards optimal multi-channel EMG electrode configurations in muscle force estimation: A high density EMG study. J. Electromyogr. Kinesiol. 15, 1–11 (2005).
pubmed: 15642649 doi: 10.1016/j.jelekin.2004.06.008
Drinkwater, E. J. & Klopper, C. Quantifying the physical demands of a musical performance and their effects on performance quality. Med. Probl. Perform. Artist. 25, 66–71 (2010).
doi: 10.21091/mppa.2010.2013
Lazarov, V., Rennotte, S. & Traube, C. De l’intention musicale au jeu instrumental. Développement d’un protocole de recherche pour l’analyse qualitative et quantitative de trois styles d’interprétation d’une oeuvre de J.-S. Bach au piano. rmo 6, 113–141 (2019).
doi: 10.7202/1062431ar
Palmer, C. Anatomy of a performance: Sources of musical expression. Music. Percept. 13, 433–453 (1996).
doi: 10.2307/40286178
Tominaga, K., Lee, A., Altenmüller, E., Miyazaki, F. & Furuya, S. Kinematic origins of motor inconsistency in expert pianists. PLoS One 11, e0161324 (2016).
pubmed: 27537686 pmcid: 4990412 doi: 10.1371/journal.pone.0161324
van Vugt, F. T., Furuya, S., Vauth, H., Jabusch, H.-C. & Altenmüller, E. Playing beautifully when you have to be fast: Spatial and temporal symmetries of movement patterns in skilled piano performance at different tempi. Exp. Brain Res. 232, 3555–3567 (2014).
pubmed: 25059908 doi: 10.1007/s00221-014-4036-4
Barry, B. K. & Enoka, R. M. The neurobiology of muscle fatigue: 15 years later. Integr. Comp. Biol. 47, 465–473 (2007).
pubmed: 21672855 doi: 10.1093/icb/icm047
Billaut, F., Basset, F. A. & Falgairette, G. Muscle coordination changes during intermittent cycling sprints. Neurosci. Lett. 380, 265–269 (2005).
pubmed: 15862899 doi: 10.1016/j.neulet.2005.01.048
Strang, A. J. & Berg, W. P. Fatigue-induced adaptive changes of anticipatory postural adjustments. Exp. Brain Res. 178, 49–61 (2007).
pubmed: 17039358 doi: 10.1007/s00221-006-0710-5
Jaric, S. et al. Changes in movement final position associated with agonist and antagonist muscle fatigue. Eur. J. Appl. Physiol. Occup. Physiol. 80, 467–471 (1999).
pubmed: 10502081 doi: 10.1007/s004210050619
Morrey, B. F., Sanchez-Sotelo, J. & Morrey, M. E. Morrey’s The Elbow and Its Disorders-5th Edition. https://www.elsevier.com/books/morreys-the-elbow-and-its-disorders/morrey/978-0-323-34169-1 (2018).
Siekirk, N., Lai, Q. & Kendall, B. Effects of limb-specific fatigue on motor learning during an upper extremity proprioceptive task. Int. J. Motor Control Learn. 1, 76–81 (2018).
Branscheidt, M. et al. Fatigue induces long-lasting detrimental changes in motor-skill learning. eLife https://elifesciences.org/articles/40578 (2019) https://doi.org/10.7554/eLife.40578 .
Alderman, R. B. Influence of local fatigue on speed and accuracy in motor learning. Res. Q. Am. Assoc. Health Phys. Educ. Recreat. 36, 131–140 (1965).
Carron, A. V. & Ferchuk, A. D. The effect of fatigue on learning and performance of a gross motor task. J. Mot. Behav. 3, 62–68 (1971).
pubmed: 23941350 doi: 10.1080/00222895.1971.10734893
Borg, G. Psychophysical bases of perceived exertion. Med. Sci. Sports Exerc. 14, 377–381 (1982).
pubmed: 7154893 doi: 10.1249/00005768-198205000-00012
McCrary, J. M., Ackermann, B. J. & Halaki, M. EMG amplitude, fatigue threshold, and time to task failure: A meta-analysis. J. Sci. Med. Sport 21, 736–741 (2018).
pubmed: 29233666 doi: 10.1016/j.jsams.2017.11.005
Enoka, R. M. & Duchateau, J. Muscle fatigue: What, why and how it influences muscle function. J. Physiol. (Lond.) 586, 11–23 (2008).
doi: 10.1113/jphysiol.2007.139477
Martinez-Valdes, E. et al. Inability to increase the neural drive to muscle is associated with task failure during submaximal contractions. J. Neurophysiol. https://doi.org/10.1152/jn.00447.2020 (2020).
doi: 10.1152/jn.00447.2020 pubmed: 32877309
Hamill, J., Knutsen, K. & derrick, T. Biomechanical basis of human movement|Joseph Hamill PhD, Kathleen Knutzen PhD, Timothy Derrick|download. https://b-ok.cc/book/2714366/a2e718 (2015).
Fagarasanu, M., Kumar, S. & Narayan, Y. Measurement of angular wrist neutral zone and forearm muscle activity. Clin. Biomech. 19, 671–677 (2004).
doi: 10.1016/j.clinbiomech.2004.05.004
Shimose, R., Matsunaga, A. & Muro, M. Effect of submaximal isometric wrist extension training on grip strength. Eur. J. Appl. Physiol. 111, 557–565 (2011).
pubmed: 20931218 doi: 10.1007/s00421-010-1675-4
Hallbeck, M. S. Flexion and extension forces generated by wrist-dedicated muscles over the range of motion. Appl. Ergon. 25, 379–385 (1994).
pubmed: 15676990 doi: 10.1016/0003-6870(94)90057-4
Poulis, S., Rapanakis, P., Pastra, X., Poulis, I. & Soames, R. W. Force-velocity relationship of the wrist flexors and extensors: The influence of small and large handgrips. Isokinet. Exerc. Sci. 11, 101–108 (2003).
doi: 10.3233/IES-2003-0135
Singh, M. & Karpovich, P. V. Isotonic and isometric forces of forearm flexors and extensors. J. Appl. Physiol. 21, 1435–1437 (1966).
pubmed: 5916693 doi: 10.1152/jappl.1966.21.4.1435
Allsop, L. & Ackland, T. The prevalence of playing-related musculoskeletal disorders in relation to piano players’ playing techniques and practising strategies. Music Perform. Res. 3(1), 61–78 (2010).
Goebl, W. & Palmer, C. Temporal control and hand movement efficiency in skilled music performance. PLoS One 8, e50901 (2013).
pubmed: 23300946 pmcid: 3536780 doi: 10.1371/journal.pone.0050901
Verdugo, F., Pelletier, J., Michaud, B., Traube, C. & Begon, M. Effects of trunk motion, touch, and articulation on upper-limb velocities and on joint contribution to endpoint velocities during the production of loud piano tones. Front. Psychol. 11, 20 (2020).
doi: 10.3389/fpsyg.2020.01159
Davey, P. R., Thorpe, R. D. & Williams, C. Fatigue decreases skilled tennis performance. J. Sports Sci. 20, 311–318 (2002).
pubmed: 12003276 doi: 10.1080/026404102753576080
Evans, R. K., Scoville, C. R., Ito, M. A. & Mello, R. P. Upper body fatiguing exercise and shooting performance. Mil. Med. 168, 451–456 (2003).
pubmed: 12834134 doi: 10.1093/milmed/168.6.451
Lyons, M., Al-Nakeeb, Y. & Nevill, A. Performance of soccer passing skills under moderate and high-intensity localized muscle fatigue. J. Strength Cond. Res. 20, 197–202 (2006).
pubmed: 16503681
Singh, T., Skm, V., Zatsiorsky, V. M. & Latash, M. L. Fatigue and motor redundancy: Adaptive increase in finger force variance in multi-finger tasks. J. Neurophysiol. 103, 2990–3000 (2010).
pubmed: 20357060 pmcid: 2888234 doi: 10.1152/jn.00077.2010
Madeleine, P., Voigt, M. & Mathiassen, S. E. The size of cycle-to-cycle variability in biomechanical exposure among butchers performing a standardised cutting task. Ergonomics 51, 1078–1095 (2008).
pubmed: 18568966 doi: 10.1080/00140130801958659
Madeleine, P. & Farina, D. Time to task failure in shoulder elevation is associated to increase in amplitude and to spatial heterogeneity of upper trapezius mechanomyographic signals. Eur. J. Appl. Physiol. 102, 325–333 (2008).
pubmed: 17943307 doi: 10.1007/s00421-007-0589-2
Granata, K. P., Marras, W. S. & Davis, K. G. Variation in spinal load and trunk dynamics during repeated lifting exertions. Clin. Biomech. (Bristol, Avon) 14, 367–375 (1999).
doi: 10.1016/S0268-0033(99)00004-2
Madeleine, P. & Madsen, T. M. T. Changes in the amount and structure of motor variability during a deboning process are associated with work experience and neck–shoulder discomfort. Appl. Ergon. 40, 887–894 (2009).
pubmed: 19195644 doi: 10.1016/j.apergo.2008.12.006
Kochevitsky, G. The Art of Piano Playing: A Scientific Approach (Alfred Music, 1995).
Bai, J. The Importance of the Hanon Piano Fingering in Piano Teaching 336–338 (Atlantis Press, 2018). https://doi.org/10.2991/mess-18.2018.62 .
Finneran, A. & O’Sullivan, L. Effects of grip type and wrist posture on forearm EMG activity, endurance time and movement accuracy. Int. J. Ind. Ergon. 43, 91–99 (2013).
doi: 10.1016/j.ergon.2012.11.012
Vanswearingen, J. M. Measuring wrist muscle strength. J. Orthop. Sports Phys. Ther. 4, 217–228 (1983).
pubmed: 18806442 doi: 10.2519/jospt.1983.4.4.217
Mello, R. G. T., Oliveira, L. F. & Nadal, J. Digital Butterworth filter for subtracting noise from low magnitude surface electromyogram. Comput. Methods Programs Biomed. 87, 28–35 (2007).
pubmed: 17548125 doi: 10.1016/j.cmpb.2007.04.004
Gallina, A. & Botter, A. Spatial localization of electromyographic amplitude distributions associated to the activation of dorsal forearm muscles. Front. Physiol. 4, 3 (2013).
doi: 10.3389/fphys.2013.00367
Hu, X., Suresh, N. L., Xue, C. & Rymer, W. Z. Extracting extensor digitorum communis activation patterns using high-density surface electromyography. Front. Physiol. 6, 279 (2015).
pubmed: 26500558 pmcid: 4593961 doi: 10.3389/fphys.2015.00279
Baeyens, J.-P. et al. Effects of rehearsal time and repertoire speed on extensor carpi radialis EMG in conservatory piano students. Med. Probl. Perform. Artist. 35, 81–88 (2020).
doi: 10.21091/mppa.2020.2013
Furuya, S., Aoki, T., Nakahara, H. & Kinoshita, H. Individual differences in the biomechanical effect of loudness and tempo on upper-limb movements during repetitive piano keystrokes. Hum. Mov. Sci. 31, 26–39 (2012).
pubmed: 21816497 doi: 10.1016/j.humov.2011.01.002
Yang, C. et al. Changes in movement variability and task performance during a fatiguing repetitive pointing task. J. Biomech. 76, 212–219 (2018).
pubmed: 29908654 doi: 10.1016/j.jbiomech.2018.05.025
Grinsted, A. C., Moore, J. & Jevrejeva, S. Application of cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process. Geophys. 11, 20 (2004).
doi: 10.5194/npg-11-561-2004
Field, A. Discovering Statistics Using SPSS (Introducing Statistical Method), 3rd edition. (2009).
Berman, B. Notes from the Pianist’s Bench (Yale University Press, 2002).
Goebl, W. Melody lead in piano performance: Expressive device or artifact?. J. Acoust. Soc. Am. 110, 10 (2001).
doi: 10.1121/1.1376133
Farina, D., Cescon, C. & Merletti, R. Influence of anatomical, physical, and detection-system parameters on surface EMG. Biol. Cybern. 86, 445–456 (2002).
pubmed: 12111273 doi: 10.1007/s00422-002-0309-2
Cohen, J. Statistical Power Analysis for the Behavioral Sciences (2e éd.). (1988).
Lakens, D. Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Front. Psychol. 4, 863 (2013).
pubmed: 24324449 pmcid: 3840331 doi: 10.3389/fpsyg.2013.00863

Auteurs

Etienne Goubault (E)

Laboratoire de Simulation et Modélisation du Mouvement, École de Kinésiologie et des Sciences de l'activité Physique, Université de Montréal, 1700 Rue Jacques-Tétreault, Laval, QC, Canada. etienne.goubault.de.brugiere@umontreal.ca.

Felipe Verdugo (F)

Input Devices and Music Interaction Laboratory, Centre for Interdisciplinary Research in Music Media and Technology, Schulich School of Music, McGill University, Montreal, QC, Canada.
EXPRESSION Team, Université Bretagne-Sud, Vannes, France.

Justine Pelletier (J)

Laboratoire Arts vivants et interdisciplinarité, Département de danse, Université du Québec à Montréal, Montreal, QC, Canada.

Caroline Traube (C)

Laboratoire de recherche sur le geste musicien, Faculté de musique, Université de Montréal, Montreal, QC, Canada.

Mickaël Begon (M)

Laboratoire de Simulation et Modélisation du Mouvement, École de Kinésiologie et des Sciences de l'activité Physique, Université de Montréal, 1700 Rue Jacques-Tétreault, Laval, QC, Canada.
Sainte-Justine Hospital Research Center, Montreal, QC, Canada.

Fabien Dal Maso (F)

Laboratoire de Simulation et Modélisation du Mouvement, École de Kinésiologie et des Sciences de l'activité Physique, Université de Montréal, 1700 Rue Jacques-Tétreault, Laval, QC, Canada.
Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage, Montréal, QC, Canada.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH