Genomic insights into population history and biological adaptation in Oceania.
Adaptation, Biological
/ genetics
Animals
Australia
Biological Evolution
Datasets as Topic
Asia, Eastern
Genetic Introgression
Genetics, Population
Genome, Human
/ genetics
Genomics
History, Ancient
Human Migration
/ history
Humans
Islands
Native Hawaiian or Other Pacific Islander
/ genetics
Neanderthals
/ genetics
Oceania
Pacific Ocean
Taiwan
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
04 2021
04 2021
Historique:
received:
20
05
2020
accepted:
13
01
2021
pubmed:
16
4
2021
medline:
15
12
2021
entrez:
15
4
2021
Statut:
ppublish
Résumé
The Pacific region is of major importance for addressing questions regarding human dispersals, interactions with archaic hominins and natural selection processes
Identifiants
pubmed: 33854233
doi: 10.1038/s41586-021-03236-5
pii: 10.1038/s41586-021-03236-5
doi:
Types de publication
Historical Article
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
583-589Références
Gosling, A. L. & Matisoo-Smith, E. A. The evolutionary history and human settlement of Australia and the Pacific. Curr. Opin. Genet. Dev. 53, 53–59 (2018).
pubmed: 30029008
doi: 10.1016/j.gde.2018.06.015
Hung, H.-C. & Carson, M. T. Foragers, fishers and farmers: origins of the Taiwanese Neolithic. Antiquity 88, 1115–1131 (2014).
doi: 10.1017/S0003598X00115352
Gray, R. D., Drummond, A. J. & Greenhill, S. J. Language phylogenies reveal expansion pulses and pauses in Pacific settlement. Science 323, 479–483 (2009).
pubmed: 19164742
doi: 10.1126/science.1166858
Bellwood, P. First Farmers: the Origins of Agricultural Societies (Blackwell, 2005).
O’Connell, J. F. et al. When did Homo sapiens first reach Southeast Asia and Sahul? Proc. Natl Acad. Sci. USA 115, 8482–8490 (2018).
pubmed: 30082377
pmcid: 6112744
doi: 10.1073/pnas.1808385115
Kirch, P. V. On the Road of the Winds: An Archeological History of the Pacific Islands before European Contact (Univ. California Press, 2017).
Wollstein, A. et al. Demographic history of Oceania inferred from genome-wide data. Curr. Biol. 20, 1983–1992 (2010).
pubmed: 21074440
doi: 10.1016/j.cub.2010.10.040
Lipson, M. et al. Population turnover in Remote Oceania shortly after initial settlement. Curr. Biol. 28, 1157–1165 (2018).
pubmed: 29501328
pmcid: 5882562
doi: 10.1016/j.cub.2018.02.051
Skoglund, P. et al. Genomic insights into the peopling of the Southwest Pacific. Nature 538, 510–513 (2016).
pubmed: 27698418
pmcid: 5515717
doi: 10.1038/nature19844
Posth, C. et al. Language continuity despite population replacement in Remote Oceania. Nat. Ecol. Evol. 2, 731–740 (2018).
pubmed: 29487365
pmcid: 5868730
doi: 10.1038/s41559-018-0498-2
Pugach, I. et al. The gateway from Near into Remote Oceania: new insights from genome-wide data. Mol. Biol. Evol. 35, 871–886 (2018).
pubmed: 29301001
pmcid: 5889034
doi: 10.1093/molbev/msx333
Bergström, A. et al. A Neolithic expansion, but strong genetic structure, in the independent history of New Guinea. Science 357, 1160–1163 (2017).
pubmed: 28912245
pmcid: 5802383
doi: 10.1126/science.aan3842
Ioannidis, A. G. et al. Native American gene flow into Polynesia predating Easter Island settlement. Nature 583, 572–577 (2020).
pubmed: 32641827
doi: 10.1038/s41586-020-2487-2
pmcid: 8939867
Qin, P. & Stoneking, M. Denisovan ancestry in East Eurasian and Native American populations. Mol. Biol. Evol. 32, 2665–2674 (2015).
pubmed: 26104010
doi: 10.1093/molbev/msv141
Reich, D. et al. Denisova admixture and the first modern human dispersals into Southeast Asia and Oceania. Am. J. Hum. Genet. 89, 516–528 (2011).
pubmed: 21944045
pmcid: 3188841
doi: 10.1016/j.ajhg.2011.09.005
Vernot, B. et al. Excavating Neandertal and Denisovan DNA from the genomes of Melanesian individuals. Science 352, 235–239 (2016).
pubmed: 26989198
pmcid: 6743480
doi: 10.1126/science.aad9416
Sankararaman, S., Mallick, S., Patterson, N. & Reich, D. The combined landscape of Denisovan and Neanderthal ancestry in present-day humans. Curr. Biol. 26, 1241–1247 (2016).
pubmed: 27032491
pmcid: 4864120
doi: 10.1016/j.cub.2016.03.037
Malaspinas, A. S. et al. A genomic history of Aboriginal Australia. Nature 538, 207–214 (2016).
pubmed: 27654914
doi: 10.1038/nature18299
Mallick, S. et al. The Simons Genome Diversity Project: 300 genomes from 142 diverse populations. Nature 538, 201–206 (2016).
pubmed: 27654912
pmcid: 5161557
doi: 10.1038/nature18964
Prüfer, K. et al. The complete genome sequence of a Neanderthal from the Altai Mountains. Nature 505, 43–49 (2014).
doi: 10.1038/nature12886
pubmed: 24352235
Prüfer, K. et al. A high-coverage Neandertal genome from Vindija Cave in Croatia. Science 358, 655–658 (2017).
pubmed: 28982794
pmcid: 6185897
doi: 10.1126/science.aao1887
Meyer, M. et al. A high-coverage genome sequence from an archaic Denisovan individual. Science 338, 222–226 (2012).
pubmed: 22936568
pmcid: 3617501
doi: 10.1126/science.1224344
Lipson, M. et al. Three phases of ancient migration shaped the ancestry of human populations in Vanuatu. Curr. Biol. 30, 4846–4856 (2020).
pubmed: 33065004
doi: 10.1016/j.cub.2020.09.035
pmcid: 7755836
Excoffier, L., Dupanloup, I., Huerta-Sánchez, E., Sousa, V. C. & Foll, M. Robust demographic inference from genomic and SNP data. PLoS Genet. 9, e1003905 (2013).
pubmed: 24204310
pmcid: 3812088
doi: 10.1371/journal.pgen.1003905
Larena, M. et al. Multiple migrations to the Philippines during the last 50,000 years. Proc. Natl Acad. Sci. USA, https://doi.org/10.1073/pnas.2026132118 (2021).
Yang, M. A. et al. Ancient DNA indicates human population shifts and admixture in northern and southern China. Science 369, 282–288 (2020).
pubmed: 32409524
doi: 10.1126/science.aba0909
Rieth, T. M. & Athens, J. S. Late Holocene human expansion into Near and Remote Oceania: a Bayesian model of the chronologies of the Mariana Islands and Bismarck Archipelago. J. Island Coast. Archaeol. 14, 5–16 (2019).
doi: 10.1080/15564894.2017.1331939
Browning, S. R., Browning, B. L., Zhou, Y., Tucci, S. & Akey, J. M. Analysis of human sequence data reveals two pulses of archaic Denisovan admixture. Cell 173, 53–61 (2018).
pubmed: 29551270
pmcid: 5866234
doi: 10.1016/j.cell.2018.02.031
Jacobs, G. S. et al. Multiple deeply divergent Denisovan ancestries in Papuans. Cell 177, 1010–1021 (2019).
pubmed: 30981557
doi: 10.1016/j.cell.2019.02.035
Détroit, F. et al. A new species of Homo from the Late Pleistocene of the Philippines. Nature 568, 181–186 (2019).
pubmed: 30971845
doi: 10.1038/s41586-019-1067-9
Gittelman, R. M. et al. Archaic hominin admixture facilitated adaptation to out-of-Africa environments. Curr. Biol. 26, 3375–3382 (2016).
pubmed: 27839976
pmcid: 6764441
doi: 10.1016/j.cub.2016.10.041
Racimo, F., Marnetto, D. & Huerta-Sánchez, E. Signatures of archaic adaptive introgression in present-day human populations. Mol. Biol. Evol. 34, 296–317 (2017).
pubmed: 27756828
Simonti, C. N. et al. The phenotypic legacy of admixture between modern humans and Neandertals. Science 351, 737–741 (2016).
pubmed: 26912863
pmcid: 4849557
doi: 10.1126/science.aad2149
Vitale, C. et al. Surface expression and function of p75/AIRM-1 or CD33 in acute myeloid leukemias: engagement of CD33 induces apoptosis of leukemic cells. Proc. Natl Acad. Sci. USA 98, 5764–5769 (2001).
pubmed: 11320212
doi: 10.1073/pnas.091097198
pmcid: 33287
Negishi, H. et al. Negative regulation of Toll-like-receptor signaling by IRF-4. Proc. Natl Acad. Sci. USA 102, 15989–15994 (2005).
pubmed: 16236719
doi: 10.1073/pnas.0508327102
pmcid: 1257749
Hedblom, E. & Kirkness, E. F. A novel class of GABA
pubmed: 9182563
doi: 10.1074/jbc.272.24.15346
Hoffmann, T. J. et al. A large multiethnic genome-wide association study of adult body mass index identifies novel loci. Genetics 210, 499–515 (2018).
pubmed: 30108127
pmcid: 6216593
doi: 10.1534/genetics.118.301479
Lee, I. H. et al. Atg7 modulates p53 activity to regulate cell cycle and survival during metabolic stress. Science 336, 225–228 (2012).
pubmed: 22499945
pmcid: 4721513
doi: 10.1126/science.1218395
Giri, A. et al. Trans-ethnic association study of blood pressure determinants in over 750,000 individuals. Nat. Genet. 51, 51–62 (2019).
pubmed: 30578418
doi: 10.1038/s41588-018-0303-9
Sakaue, S. et al. Functional variants in ADH1B and ALDH2 are non-additively associated with all-cause mortality in Japanese population. Eur. J. Hum. Genet. 28, 378–382 (2020).
pubmed: 31558841
doi: 10.1038/s41431-019-0518-y
Perttilä, J. et al. OSBPL10, a novel candidate gene for high triglyceride trait in dyslipidemic Finnish subjects, regulates cellular lipid metabolism. J. Mol. Med. 87, 825–835 (2009).
pubmed: 19554302
pmcid: 2707950
doi: 10.1007/s00109-009-0490-z
Sierra, B. et al. OSBPL10, RXRA and lipid metabolism confer African-ancestry protection against dengue haemorrhagic fever in admixed Cubans. PLoS Pathog. 13, e1006220 (2017).
pubmed: 28241052
pmcid: 5344536
doi: 10.1371/journal.ppat.1006220
Gao, X. R., Huang, H. & Kim, H. Genome-wide association analyses identify 139 loci associated with macular thickness in the UK Biobank cohort. Hum. Mol. Genet. 28, 1162–1172 (2019).
pubmed: 30535121
doi: 10.1093/hmg/ddy422
Sella, G. & Barton, N. H. Thinking about the evolution of complex traits in the era of genome-wide association studies. Annu. Rev. Genomics Hum. Genet. 20, 461–493 (2019).
pubmed: 31283361
doi: 10.1146/annurev-genom-083115-022316
Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018).
pubmed: 30305743
pmcid: 6786975
doi: 10.1038/s41586-018-0579-z
Field, Y. et al. Detection of human adaptation during the past 2000 years. Science 354, 760–764 (2016).
pubmed: 27738015
pmcid: 5182071
doi: 10.1126/science.aag0776
Berg, J. J. et al. Reduced signal for polygenic adaptation of height in UK Biobank. eLife 8, e39725 (2019).
pubmed: 30895923
pmcid: 6428572
doi: 10.7554/eLife.39725
Brown, P. et al. A new small-bodied hominin from the Late Pleistocene of Flores, Indonesia. Nature 431, 1055–1061 (2004).
pubmed: 15514638
doi: 10.1038/nature02999
Gouy, A. & Excoffier, L. Polygenic patterns of adaptive introgression in modern humans are mainly shaped by response to pathogens. Mol. Biol. Evol. 37, 1420–1433 (2020).
pubmed: 31935281
doi: 10.1093/molbev/msz306
Gosling, A. L., Buckley, H. R., Matisoo-Smith, E. & Merriman, T. R. Pacific populations, metabolic disease and ‘just-so stories’: a critique of the ‘thrifty genotype’ hypothesis in Oceania. Ann. Hum. Genet. 79, 470–480 (2015).
pubmed: 26420513
doi: 10.1111/ahg.12132
R Core Team. R: A language and environment for statistical computing. http://www.R-project.org/ (R Foundation for Statistical Computing, 2013).
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).
pubmed: 19451168
pmcid: 2705234
doi: 10.1093/bioinformatics/btp324
DePristo, M. A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43, 491–498 (2011).
pubmed: 21478889
pmcid: 3083463
doi: 10.1038/ng.806
McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).
pubmed: 20644199
pmcid: 2928508
doi: 10.1101/gr.107524.110
Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).
pubmed: 17701901
pmcid: 1950838
doi: 10.1086/519795
Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4, 7 (2015).
pubmed: 25722852
pmcid: 4342193
doi: 10.1186/s13742-015-0047-8
Manichaikul, A. et al. Robust relationship inference in genome-wide association studies. Bioinformatics 26, 2867–2873 (2010).
pubmed: 20926424
pmcid: 3025716
doi: 10.1093/bioinformatics/btq559
Sherry, S. T. et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 29, 308–311 (2001).
pubmed: 11125122
pmcid: 29783
doi: 10.1093/nar/29.1.308
Patterson, N., Price, A. L. & Reich, D. Population structure and eigenanalysis. PLoS Genet. 2, e190 (2006).
pubmed: 17194218
pmcid: 1713260
doi: 10.1371/journal.pgen.0020190
Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664 (2009).
pubmed: 19648217
pmcid: 2752134
doi: 10.1101/gr.094052.109
Barrett, J. C., Fry, B., Maller, J. & Daly, M. J. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21, 263–265 (2005).
pubmed: 15297300
doi: 10.1093/bioinformatics/bth457
1000 Genomes Project Consortium. A global reference for human genetic variation. Nature 526, 68–74 (2015).
doi: 10.1038/nature15393
Excoffier, L., Smouse, P. E. & Quattro, J. M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131, 479–491 (1992).
pubmed: 1644282
pmcid: 1205020
doi: 10.1093/genetics/131.2.479
Meyer, L. R. et al. The UCSC Genome Browser database: extensions and updates 2013. Nucleic Acids Res. 41, D64–D69 (2013).
pubmed: 23155063
doi: 10.1093/nar/gks1048
de Manuel, M. et al. Chimpanzee genomic diversity reveals ancient admixture with bonobos. Science 354, 477–481 (2016).
pubmed: 27789843
pmcid: 5546212
doi: 10.1126/science.aag2602
Sikora, M. et al. The population history of northeastern Siberia since the Pleistocene. Nature 570, 182–188 (2019).
pubmed: 31168093
doi: 10.1038/s41586-019-1279-z
Schiffels, S. & Durbin, R. Inferring human population size and separation history from multiple genome sequences. Nat. Genet. 46, 919–925 (2014).
pubmed: 24952747
pmcid: 4116295
doi: 10.1038/ng.3015
Fenner, J. N. Cross-cultural estimation of the human generation interval for use in genetics-based population divergence studies. Am. J. Phys. Anthropol. 128, 415–423 (2005).
pubmed: 15795887
doi: 10.1002/ajpa.20188
Fu, Q. et al. Genome sequence of a 45,000-year-old modern human from western Siberia. Nature 514, 445–449 (2014).
pubmed: 25341783
pmcid: 4753769
doi: 10.1038/nature13810
Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).
pubmed: 21653522
pmcid: 3137218
doi: 10.1093/bioinformatics/btr330
Excoffier, L. & Lischer, H. E. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).
pubmed: 21565059
doi: 10.1111/j.1755-0998.2010.02847.x
Beaumont, M. A., Zhang, W. & Balding, D. J. Approximate Bayesian computation in population genetics. Genetics 162, 2025–2035 (2002).
pubmed: 12524368
pmcid: 1462356
Tavaré, S., Balding, D. J., Griffiths, R. C. & Donnelly, P. Inferring coalescence times from DNA sequence data. Genetics 145, 505–518 (1997).
pubmed: 9071603
pmcid: 1207814
doi: 10.1093/genetics/145.2.505
Fortes-Lima, C. A., Laurent, L., Thouzeau, V., Toupance, B. & Verdu, P. Complex genetic admixture histories reconstructed with approximate Bayesian computations. Mol. Ecol. Resour. https://doi.org/10.1111/1755-0998.13325 (2021).
Verdu, P. & Rosenberg, N. A. A general mechanistic model for admixture histories of hybrid populations. Genetics 189, 1413–1426 (2011).
pubmed: 21968194
pmcid: 3241432
doi: 10.1534/genetics.111.132787
Gravel, S. Population genetics models of local ancestry. Genetics 191, 607–619 (2012).
pubmed: 22491189
pmcid: 3374321
doi: 10.1534/genetics.112.139808
Liang, M. & Nielsen, R. The lengths of admixture tracts. Genetics 197, 953–967 (2014).
pubmed: 24770332
pmcid: 4096373
doi: 10.1534/genetics.114.162362
Csilléry, K., François, O. & Blum, M. G. B. abc: an R package for approximate Bayesian computation (ABC). Methods Ecol. Evol. 3, 475–479 (2012).
doi: 10.1111/j.2041-210X.2011.00179.x
Pudlo, P. et al. Reliable ABC model choice via random forests. Bioinformatics 32, 859–866 (2016).
pubmed: 26589278
doi: 10.1093/bioinformatics/btv684
Maples, B. K., Gravel, S., Kenny, E. E. & Bustamante, C. D. RFMix: a discriminative modeling approach for rapid and robust local-ancestry inference. Am. J. Hum. Genet. 93, 278–288 (2013).
pubmed: 23910464
pmcid: 3738819
doi: 10.1016/j.ajhg.2013.06.020
Patterson, N. et al. Ancient admixture in human history. Genetics 192, 1065–1093 (2012).
pubmed: 22960212
pmcid: 3522152
doi: 10.1534/genetics.112.145037
Sankararaman, S. et al. The genomic landscape of Neanderthal ancestry in present-day humans. Nature 507, 354–357 (2014).
pubmed: 24476815
pmcid: 4072735
doi: 10.1038/nature12961
Delaneau, O., Marchini, J. & Zagury, J. F. A linear complexity phasing method for thousands of genomes. Nat. Methods 9, 179–181 (2012).
doi: 10.1038/nmeth.1785
Delaneau, O., Zagury, J. F. & Marchini, J. Improved whole-chromosome phasing for disease and population genetic studies. Nat. Methods 10, 5–6 (2013).
pubmed: 23269371
doi: 10.1038/nmeth.2307
Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).
pubmed: 10592173
pmcid: 102409
doi: 10.1093/nar/28.1.27
Kutmon, M. et al. WikiPathways: capturing the full diversity of pathway knowledge. Nucleic Acids Res. 44, D488–D494 (2016).
doi: 10.1093/nar/gkv1024
pubmed: 26481357
Buniello, A. et al. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. 47, D1005–D1012 (2019).
pubmed: 30445434
doi: 10.1093/nar/gky1120
The Gene Ontology Consortium. Gene ontology: tool for the unification of biology. Nat. Genet. 25, 25–29 (2000).
pmcid: 3037419
doi: 10.1038/75556
Deschamps, M. et al. genomic signatures of selective pressures and introgression from archaic hominins at human innate immunity genes. Am. J. Hum. Genet. 98, 5–21 (2016).
pubmed: 26748513
pmcid: 4716683
doi: 10.1016/j.ajhg.2015.11.014
Enard, D. & Petrov, D. A. Evidence that RNA viruses drove adaptive introgression between Neanderthals and modern humans. Cell 175, 360–371 (2018).
pubmed: 30290142
pmcid: 6176737
doi: 10.1016/j.cell.2018.08.034
Siepel, A. et al. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 15, 1034–1050 (2005).
pubmed: 16024819
pmcid: 1182216
doi: 10.1101/gr.3715005
Rentzsch, P., Witten, D., Cooper, G. M., Shendure, J. & Kircher, M. CADD: predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res. 47, D886–D894 (2019).
pubmed: 30371827
doi: 10.1093/nar/gky1016
ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).
doi: 10.1038/nature11247
Shriver, M. D. et al. The genomic distribution of population substructure in four populations using 8,525 autosomal SNPs. Hum. Genomics 1, 274–286 (2004).
pubmed: 15588487
pmcid: 3525267
doi: 10.1186/1479-7364-1-4-274
Sabeti, P. C. et al. Genome-wide detection and characterization of positive selection in human populations. Nature 449, 913–918 (2007).
pubmed: 17943131
pmcid: 2687721
doi: 10.1038/nature06250
Speidel, L., Forest, M., Shi, S. & Myers, S. R. A method for genome-wide genealogy estimation for thousands of samples. Nat. Genet. 51, 1321–1329 (2019).
pubmed: 31477933
pmcid: 7610517
doi: 10.1038/s41588-019-0484-x
GenomeAsia100K Consortium. The GenomeAsia 100K Project enables genetic discoveries across Asia. Nature 576, 106–111 (2019).
doi: 10.1038/s41586-019-1793-z