Mass spectrometry-based proteomic platforms for better understanding of SARS-CoV-2 induced pathogenesis and potential diagnostic approaches.


Journal

Proteomics
ISSN: 1615-9861
Titre abrégé: Proteomics
Pays: Germany
ID NLM: 101092707

Informations de publication

Date de publication:
05 2021
Historique:
revised: 09 04 2021
received: 09 11 2020
accepted: 12 04 2021
pubmed: 17 4 2021
medline: 26 5 2021
entrez: 16 4 2021
Statut: ppublish

Résumé

While protein-protein interaction is the first step of the SARS-CoV-2 infection, recent comparative proteomic profiling enabled the identification of over 11,000 protein dynamics, thus providing a comprehensive reflection of the molecular mechanisms underlying the cellular system in response to viral infection. Here we summarize and rationalize the results obtained by various mass spectrometry (MS)-based proteomic approaches applied to the functional characterization of proteins and pathways associated with SARS-CoV-2-mediated infections in humans. Comparative analysis of cell-lines versus tissue samples indicates that our knowledge in proteome profile alternation in response to SARS-CoV-2 infection is still incomplete and the tissue-specific response to SARS-CoV-2 infection can probably not be recapitulated efficiently by in vitro experiments. However, regardless of the viral infection period, sample types, and experimental strategies, a thorough cross-comparison of the recently published proteome, phosphoproteome, and interactome datasets led to the identification of a common set of proteins and kinases associated with PI3K-Akt, EGFR, MAPK, Rap1, and AMPK signaling pathways. Ephrin receptor A2 (EPHA2) was identified by 11 studies including all proteomic platforms, suggesting it as a potential future target for SARS-CoV-2 infection mechanisms and the development of new therapeutic strategies. We further discuss the potentials of future proteomics strategies for identifying prognostic SARS-CoV-2 responsive age-, gender-dependent, tissue-specific protein targets.

Identifiants

pubmed: 33860983
doi: 10.1002/pmic.202000279
pmc: PMC8250252
doi:

Substances chimiques

Proteome 0
Protein Kinases EC 2.7.-
Receptor, EphA2 EC 2.7.10.1

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, U.S. Gov't, Non-P.H.S. Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

e2000279

Subventions

Organisme : NIH HHS
ID : R01GM116116
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01 GM123055
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01 GM116116
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL133624
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01 GM133840
Pays : United States
Organisme : NSF
ID : OCE-1634630
Organisme : NIH HHS
ID : R01HL133624
Pays : United States
Organisme : NIH HHS
ID : R01GM133840
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01GM123055
Pays : United States

Informations de copyright

© 2021 Wiley-VCH GmbH.

Références

ACS Omega. 2021 Jan 26;6(5):3525-3534
pubmed: 33585737
Sci Immunol. 2020 Jul 15;5(49):
pubmed: 32669287
Proteomics. 2004 Feb;4(2):492-504
pubmed: 14760722
J Proteome Res. 2020 Nov 6;19(11):4380-4388
pubmed: 33090795
Int J Mol Sci. 2021 Jan 07;22(2):
pubmed: 33430309
Protein Cell. 2020 Oct;11(10):740-770
pubmed: 32780218
Curr Opin Struct Biol. 2016 Oct;40:136-144
pubmed: 27721169
PLoS Pathog. 2017 Feb 23;13(2):e1006184
pubmed: 28231312
Antiviral Res. 2020 Jan;173:104651
pubmed: 31751591
Cardiovasc Res. 2020 May 1;116(6):1097-1100
pubmed: 32227090
J Biol Chem. 2009 Feb 20;284(8):5229-39
pubmed: 19106108
Nat Microbiol. 2018 Feb;3(2):1-8
pubmed: 29292383
Urine (Amst). 2020;2:1-8
pubmed: 33688631
Nat Microbiol. 2021 Jan;6(1):73-86
pubmed: 33340034
Genome Med. 2020 Jul 28;12(1):68
pubmed: 32723359
J Proteome Res. 2020 Nov 6;19(11):4455-4469
pubmed: 33103907
J Clin Med. 2020 Mar 30;9(4):
pubmed: 32235486
Mol Cell Proteomics. 2010 Aug;9(8):1742-51
pubmed: 20418222
Mol Cell Proteomics. 2020 Apr;19(4):730-743
pubmed: 32071147
J Proteome Res. 2020 Nov 6;19(11):4393-4397
pubmed: 32786682
Proteomics. 2021 May;21(10):e2000279
pubmed: 33860983
Cell. 2021 Feb 4;184(3):775-791.e14
pubmed: 33503446
Anal Chem. 2009 Aug 15;81(16):6813-22
pubmed: 19601617
Emerg Microbes Infect. 2020 Dec;9(1):1748-1760
pubmed: 32691695
J Virol. 2005 Mar;79(6):3846-50
pubmed: 15731278
J Phys Chem B. 2020 Aug 20;124(33):7128-7137
pubmed: 32559081
Acta Pharm Sin B. 2020 Jul;10(7):1228-1238
pubmed: 32363136
Am J Physiol Lung Cell Mol Physiol. 2021 Jan 1;320(1):L84-L98
pubmed: 33146564
Biochem Biophys Rep. 2021 Jan 27;26:100933
pubmed: 33527091
PLoS One. 2020 Oct 20;15(10):e0240012
pubmed: 33079950
Med (N Y). 2021 Jan 15;2(1):99-112.e7
pubmed: 32838362
J Am Chem Soc. 2014 May 21;136(20):7295-9
pubmed: 24787140
Anal Chem. 2020 Oct 20;92(20):13813-13821
pubmed: 32966064
Future Virol. 2018 Jun;13(6):405-430
pubmed: 32201497
Engineering (Beijing). 2020 Aug 30;:
pubmed: 32904601
Emerg Microbes Infect. 2020 Dec;9(1):1712-1721
pubmed: 32619390
J Proteome Res. 2019 Apr 5;18(4):1870-1879
pubmed: 30875230
Nat Commun. 2018 Feb 28;9(1):882
pubmed: 29491378
J Comput Chem. 2008 Aug;29(11):1859-65
pubmed: 18351591
Mol Cell. 2020 Dec 17;80(6):1092-1103.e4
pubmed: 33248025
Signal Transduct Target Ther. 2021 Jan 8;6(1):9
pubmed: 33419962
Eur Respir J. 2020 Sep 3;56(3):
pubmed: 32675206
Mol Cell. 2020 Dec 17;80(6):1104-1122.e9
pubmed: 33259812
Proc Natl Acad Sci U S A. 2018 Apr 17;115(16):4140-4145
pubmed: 29610327
Cell. 2020 Aug 6;182(3):685-712.e19
pubmed: 32645325
Science. 2020 Sep 4;369(6508):
pubmed: 32669297
J Proteomics. 2017 Aug 8;165:69-74
pubmed: 28634120
J Proteome Res. 2020 Nov 6;19(11):4407-4416
pubmed: 32697082
J Proteome Res. 2016 Mar 4;15(3):976-82
pubmed: 26795204
Nat Chem Biol. 2016 Nov;12(11):959-966
pubmed: 27642862
Nature. 2021 Jun;594(7862):246-252
pubmed: 33845483
Biochem Biophys Res Commun. 2020 Oct 29;532(1):134-138
pubmed: 32829876
PLoS One. 2021 Feb 2;16(2):e0246366
pubmed: 33529233
Science. 2020 Jan 31;367(6477):512-513
pubmed: 32001644
J Proteome Res. 2020 Nov 6;19(11):4417-4427
pubmed: 32786691
Mol Cell. 2020 Oct 1;80(1):164-174.e4
pubmed: 32877642
Mol Syst Biol. 2020 Jul;16(7):e9610
pubmed: 32715618
Signal Transduct Target Ther. 2020 Oct 15;5(1):240
pubmed: 33060566
J Infect Dis. 2016 Dec 15;214(suppl 5):S482-S487
pubmed: 27920178
Nat Commun. 2020 Nov 17;11(1):5859
pubmed: 33203833
Nat Microbiol. 2018 Feb;3(2):172-180
pubmed: 29292384
Science. 2016 Sep 9;353(6304):1129-32
pubmed: 27492477
Arch Virol. 2005 May;150(5):1023-31
pubmed: 15645376
Cell Syst. 2020 Jul 22;11(1):11-24.e4
pubmed: 32619549
Mol Cell Proteomics. 2020 Oct 19;:100058
pubmed: 33077685
ACS Infect Dis. 2020 Dec 11;6(12):3174-3189
pubmed: 33263384
Nat Commun. 2020 Mar 27;11(1):1620
pubmed: 32221306
J Proteome Res. 2014 Feb 7;13(2):422-32
pubmed: 24266763
Science. 2020 Jul 17;369(6501):330-333
pubmed: 32366695
Annu Rev Anal Chem (Palo Alto Calif). 2016 Jun 12;9(1):499-519
pubmed: 27306313
Sci Rep. 2020 Dec 29;10(1):22418
pubmed: 33376242
Nat Med. 2011 May;17(5):589-95
pubmed: 21516087
Nat Med. 2020 Aug;26(8):1205-1211
pubmed: 32546824
Nat Commun. 2020 Dec 3;11(1):6201
pubmed: 33273458
Cell. 2020 Apr 16;181(2):271-280.e8
pubmed: 32142651
Mol Cell Proteomics. 2020 Sep;19(9):1503-1522
pubmed: 32591346
Proteomics. 2020 Jul;20(14):e2000107
pubmed: 32462744
Nature. 2020 Jul;583(7816):469-472
pubmed: 32408336
Methods Mol Biol. 2017;1584:369-382
pubmed: 28255713
Cell Mol Immunol. 2020 Jun;17(6):650-652
pubmed: 32346099
Science. 2020 Apr 24;368(6489):356-360
pubmed: 32327580
J Proteome Res. 2021 Feb 5;20(2):1434-1443
pubmed: 33497234
Sci Immunol. 2020 Jun 5;5(48):
pubmed: 32503877
J Proteome Res. 2020 Nov 6;19(11):4389-4392
pubmed: 32568543
Cell. 2020 Jul 9;182(1):59-72.e15
pubmed: 32492406
Nature. 2020 Jul;583(7816):459-468
pubmed: 32353859
J Med Virol. 2020 Oct;92(10):2050-2054
pubmed: 32383183
Science. 2020 Aug 7;369(6504):718-724
pubmed: 32661059
Nat Commun. 2021 Feb 8;12(1):848
pubmed: 33558493
Proc Natl Acad Sci U S A. 2012 May 8;109(19):E1163-72
pubmed: 22509030
Proteomics. 2021 Jan;21(2):e2000246
pubmed: 33111431

Auteurs

Nagib Ahsan (N)

Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA.

R Shyama Prasad Rao (RSP)

Biostatistics and Bioinformatics Division, Yenepoya Research Center, Yenepoya University, Mangaluru, India.

Rashaun S Wilson (RS)

Keck Mass Spectrometry and Proteomics Resource, Yale University, New Haven, Connecticut, USA.

Ujwal Punyamurtula (U)

COBRE Center for Cancer Research Development, Proteomics Core Facility, Rhode Island Hospital, Providence, Rhode Island, USA.

Fernanda Salvato (F)

Department of Plant and Microbial Biology, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, North Carolina, USA.

Max Petersen (M)

Signal Transduction Lab, Division of Hematology/Oncology, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA.

Mohammad Kabir Ahmed (MK)

Department of Biochemistry, Faculty of Medicine, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, Perak, Malaysia.

M Ruhul Abid (MR)

Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA.

Jacob C Verburgt (JC)

Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA.

Daisuke Kihara (D)

Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA.
Department of Computer Science, Purdue University, West Lafayette, Indiana, USA.

Zhibo Yang (Z)

Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA.

Luca Fornelli (L)

Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA.
Department of Biology, University of Oklahoma, Norman, Oklahoma, USA.

Steven B Foster (SB)

Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA.

Bharat Ramratnam (B)

COBRE Center for Cancer Research Development, Proteomics Core Facility, Rhode Island Hospital, Providence, Rhode Island, USA.
Division of Infectious Diseases, Department of Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH