Multi-omic analyses in Abyssinian cats with primary renal amyloid deposits.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
16 04 2021
16 04 2021
Historique:
received:
28
04
2020
accepted:
19
03
2021
entrez:
17
4
2021
pubmed:
18
4
2021
medline:
20
11
2021
Statut:
epublish
Résumé
The amyloidoses constitute a group of diseases occurring in humans and animals that are characterized by abnormal deposits of aggregated proteins in organs, affecting their structure and function. In the Abyssinian cat breed, a familial form of renal amyloidosis has been described. In this study, multi-omics analyses were applied and integrated to explore some aspects of the unknown pathogenetic processes in cats. Whole-genome sequences of two affected Abyssinians and 195 controls of other breeds (part of the 99 Lives initiative) were screened to prioritize potential disease-associated variants. Proteome and miRNAome from formalin-fixed paraffin-embedded kidney specimens of fully necropsied Abyssinian cats, three affected and three non-amyloidosis-affected were characterized. While the trigger of the disorder remains unclear, overall, (i) 35,960 genomic variants were detected; (ii) 215 and 56 proteins were identified as exclusive or overexpressed in the affected and control kidneys, respectively; (iii) 60 miRNAs were differentially expressed, 20 of which are newly described. With omics data integration, the general conclusions are: (i) the familial amyloid renal form in Abyssinians is not a simple monogenic trait; (ii) amyloid deposition is not triggered by mutated amyloidogenic proteins but is a mix of proteins codified by wild-type genes; (iii) the form is biochemically classifiable as AA amyloidosis.
Identifiants
pubmed: 33863921
doi: 10.1038/s41598-021-87168-0
pii: 10.1038/s41598-021-87168-0
pmc: PMC8052419
doi:
Substances chimiques
Amyloidogenic Proteins
0
MicroRNAs
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
8339Investigateurs
Reuben M Buckley
(RM)
Danielle Aberdein
(D)
Paulo C Alves
(PC)
Asa Ohlsson Andersson
(AO)
Gregory S Barsh
(GS)
Rebecca R Bellone
(RR)
Tomas F Bergström
(TF)
Adam R Boyko
(AR)
Jeffrey A Brockman
(JA)
Margret L Casal
(ML)
Marta G Castelhano
(MG)
Ottmar Distl
(O)
Nicholas H Dodman
(NH)
N Matthew Ellinwood
(NM)
Jonathan E Fogle
(JE)
Oliver P Forman
(OP)
Dorian J Garrick
(DJ)
Edward I Ginns
(EI)
Bianca Haase
(B)
Jens Häggström
(J)
Robert J Harvey
(RJ)
Daisuke Hasegawa
(D)
Isabel Hernandez
(I)
Marjo K Hytönen
(MK)
Maria Kaukonen
(M)
Christopher B Kaelin
(CB)
Tomoki Kosho
(T)
Emilie Leclerc
(E)
Teri L Lear
(TL)
Tosso Leeb
(T)
Ronald H L Li
(RHL)
Hannes Lohi
(H)
Mark A Magnuson
(MA)
Richard Malik
(R)
Shrinivasrao P Mane
(SP)
John S Munday
(JS)
William J Murphy
(WJ)
Niels C Pedersen
(NC)
Simon M Peterson-Jones
(SM)
Max F Rothschild
(MF)
Clare Rusbridge
(C)
Beth Shapiro
(B)
Joshua A Stern
(JA)
William F Swanson
(WF)
Karen A Terio
(KA)
Rory J Todhunter
(RJ)
Wesley C Warren
(WC)
Elizabeth A Wilcox
(EA)
Julia H Wildschutte
(JH)
Yoshihiko Yu
(Y)
Leslie A Lyons
(LA)
Références
Holub, D. et al. Mass spectrometry amyloid typing is reproducible across multiple organ sites. BioMed Res. Int. 2019, 1–9 (2019).
doi: 10.1155/2019/3689091
Benson, M. D. et al. Amyloid nomenclature 2018: recommendations by the International Society of Amyloidosis (ISA) nomenclature committee. Amyloid 25, 215–219 (2018).
pubmed: 30614283
doi: 10.1080/13506129.2018.1549825
Merlini, G. et al. Effects of Tafamidis on Transthyretin stabilization and clinical outcomes in patients with non-Val30Met Transthyretin amyloidosis. J. Cardiovasc. Trans. Res. 6, 1011–1020 (2013).
doi: 10.1007/s12265-013-9512-x
Allsop, D. & Mayes, J. Amyloid β-peptide and Alzheimer’s disease. Essays Biochem. 56, 99–110 (2014).
pubmed: 25131589
doi: 10.1042/bse0560099
Elitok, O. M., Elitok, B. & Unver, O. Renal amyloidosis in cattle with inflammatory diseases. J. Vet. Intern. 22, 450–455 (2008).
doi: 10.1111/j.1939-1676.2008.0059.x
Ménsua, C. et al. Pathology of AA amyloidosis in domestic sheep and goats. Vet. Pathol. 40, 71–80 (2003).
pubmed: 12627715
doi: 10.1354/vp.40-1-71
Rideout, B. A. et al. Renal medullary amyloidosis in Dorcas gazelles. Vet. Pathol. 26, 129–135 (1989).
pubmed: 2711570
doi: 10.1177/030098588902600205
Schulze, C. et al. Generalized AA-amyloidosis in Siberian tigers (Panthera tigris altaica) with predominant renal medullary amyloid deposition. Vet. Pathol. 35, 70–74 (1998).
pubmed: 9545138
doi: 10.1177/030098589803500108
Williams, J. H., Van Wilpe, E. & Momberg, M. Renal medullary AA amyloidosis, hepatocyte dissociation and multinucleated hepatocytes in a 14-year-old free-ranging lioness (Panthera leo). J. S. Afr. Vet. Assoc. 76, 90–98 (2005).
pubmed: 16108528
doi: 10.4102/jsava.v76i2.404
Garner, M. M., Raymond, J. T., O’Brien, T. D., Nordhausen, R. W. & Russell, W. C. Amyloidosis in the black-footed ferret (Mustela nigripes). J. Zoo Wildlife Med. 38, 32–41 (2007).
doi: 10.1638/06-023.1
Guo, J.-T., Aldrich, C. E., Mason, W. S. & Pugh, J. C. Characterization of serum amyloid A protein mRNA expression and secondary amyloidosis in the domestic duck. Proc. Natl. Acad. Sci. 93, 14548–14553 (1996).
pubmed: 8962089
doi: 10.1073/pnas.93.25.14548
pmcid: 26170
Ovelgönne, J. H., Landman, W. J., Gruys, E., Gielkens, A. L. & Peeters, B. P. Identical amyloid precursor proteins in two breeds of chickens which differ in susceptibility to develop amyloid arthropathy. Amyloid 8, 41–51 (2001).
pubmed: 11293824
doi: 10.3109/13506120108993813
Andel, A. C. J., Gruys, E., Kroneman, J. & Veerkamp, J. Amyloid in the horse: a report of nine cases. Equine Vet. J. 20, 277–285 (1988).
pubmed: 3168988
doi: 10.1111/j.2042-3306.1988.tb01524.x
Østevik, L., Gunnes, G., de Souza, G. A., Wien, T. N. & Sørby, R. Nasal and ocular amyloidosis in a 15-year-old horse. Acta Vet. Scand. 56, 50 (2014).
pubmed: 25159190
pmcid: 4223893
doi: 10.1186/s13028-014-0050-6
Platz, S. J., Breuer, W., Geisel, O., Linke, R. P. & Hermanns, W. Identification of λ light chain amyloid in eight canine and two feline extramedullary plasmacytomas. J. Comp. Pathol. 116, 45–54 (1997).
pubmed: 9076599
doi: 10.1016/S0021-9975(97)80042-4
Segev, G. et al. Renal amyloidosis in dogs: a retrospective study of 91 cases with comparison of the disease between Shar-Pei and non-Shar-Pei dogs. J. Vet. Intern. Med. 26, 259–268 (2012).
pubmed: 22268374
doi: 10.1111/j.1939-1676.2011.00878.x
Olsson, M. et al. Thorough investigation of a canine Autoinflammatory Disease (AID) confirms one main risk locus and suggests a modifier locus for amyloidosis. PLoS ONE 8, e75242 (2013).
pubmed: 24130694
pmcid: 3793984
doi: 10.1371/journal.pone.0075242
Zhang, B. et al. Characterization of the cheetah serum amyloid A1 Gene: critical role and functional polymorphism of a cis-acting element. J. Hered. 99, 355–363 (2008).
pubmed: 18375929
doi: 10.1093/jhered/esn015
Terio, K. A., O’Brien, T., Lamberski, N., Famula, T. R. & Munson, L. Amyloidosis in Black-footed Cats (Felis nigripes). Vet. Pathol. 45, 393–400 (2008).
pubmed: 18487501
doi: 10.1354/vp.45-3-393
Chew, D. J., DiBartola, S. P., Boyce, J. T. & Gasper, P. W. Renal amyloidosis in related Abyssinian cats. J. Am. Vet. Med. Assoc. 181, 139–142 (1982).
pubmed: 7118693
Boyce, J. T., DiBartola, S. P., Chew, D. J. & Gasper, P. W. Familial renal amyloidosis in Abyssinian cats. Vet. Pathol. 21, 33–38 (1984).
pubmed: 6710810
doi: 10.1177/030098588402100106
van der Linde-Sipman, J. S., Niewold, T. A., Tooten, P. C. J., de Neijs-Backer, M. & Gruys, E. Generalized AA-amyloidosis in Siamese and Oriental cats. Vet. Immunol. Immunop. 56, 1–10 (1997).
doi: 10.1016/S0165-2427(96)05717-0
Niewold, T. A., van der Linde-Sipman, J. S., Murphy, C., Tooten, P. C. & Gruys, E. Familial amyloidosis in cats: Siamese and Abyssinian AA proteins differ in primary sequence and pattern of deposition. Amyloid 6, 205–209 (1999).
pubmed: 10524286
doi: 10.3109/13506129909007328
van Rossum, M. et al. Analysis of cDNA sequences of feline SAAs. Amyloid 11, 38–43 (2004).
pubmed: 15185497
doi: 10.1080/13506120410001676836
DiBartola, S. P., Benson, M. D., Dwulet, F. E. & Cornacoff, J. B. Isolation and characterization of amyloid protein AA in the Abyssinian cat. Lab. Invest. 52, 485–489 (1985).
pubmed: 3990242
Kluve-Beckerman, B., Dwulet, F. E., DiBartonla, S. P. & Benson, M. D. Primary structures of dog and cat amyloid A proteins: comparison to human AA. Comp. Biochem. Phy. B 94, 175–183 (1989).
doi: 10.1016/0305-0491(89)90030-8
Johnson, K. H. et al. Amino acid sequence variations in protein AA of cats with high and low incidences of AA amyloidosis. Comp. Biochem. Physiol. B 94, 765–768 (1989).
pubmed: 2605915
doi: 10.1016/0305-0491(89)90162-4
Lavatelli, F. & Vrana, J. A. Proteomic typing of amyloid deposits in systemic amyloidoses. Amyloid 18, 177–182 (2011).
pubmed: 22080761
doi: 10.3109/13506129.2011.630762
Vrana, J. A. et al. Classification of amyloidosis by laser microdissection and mass spectrometry-based proteomic analysis in clinical biopsy specimens. Blood 114, 4957–4959 (2009).
pubmed: 19797517
doi: 10.1182/blood-2009-07-230722
Klein, C. J. et al. Mass spectrometric-based proteomic analysis of amyloid neuropathy type in nerve tissue. Arch. Neurol. 68, 1 (2011).
doi: 10.1001/archneurol.2010.261
Rowczenio, D. et al. Amyloidogenicity and clinical phenotype associated with five novel mutations in apolipoprotein A-I. Am. J. Pathol. 179, 1978–1987 (2011).
pubmed: 21820994
pmcid: 3181365
doi: 10.1016/j.ajpath.2011.06.024
Sethi, S. et al. Medullary amyloidosis associated with apolipoprotein A-IV deposition. Kidney Int. 81, 201–206 (2012).
pubmed: 21900878
doi: 10.1038/ki.2011.316
Weng, L. et al. Dysregulation of miRNAs in AL amyloidosis. Amyloid 18, 128–135 (2011).
pubmed: 21834602
pmcid: 5615404
doi: 10.3109/13506129.2011.588977
Patel, N. et al. MicroRNAs can regulate human APP levels. Mol. Neurodegener. 3, 10 (2008).
pubmed: 18684319
pmcid: 2529281
doi: 10.1186/1750-1326-3-10
Ichii, O. et al. MicroRNA expression profiling of cat and dog kidneys. Res. Vet. Sci. 96, 299–303 (2014).
pubmed: 24530019
doi: 10.1016/j.rvsc.2014.01.003
Weber, K., Rostert, N., Bauersachs, S. & Wess, G. Serum microRNA profiles in cats with hypertrophic cardiomyopathy. Mol. Cell. Biochem. 402, 171–180 (2015).
pubmed: 25573325
doi: 10.1007/s11010-014-2324-8
Cong, W. et al. Global miRNA expression profiling of domestic cat livers following acute Toxoplasma gondii infection. Oncotarget 8, 1 (2017).
doi: 10.18632/oncotarget.16108
Sun, J. et al. MicroRNA profile analysis of a feline kidney cell line before and after infection with mink enteritis virus. Gene 539, 224–229 (2014).
pubmed: 24525403
doi: 10.1016/j.gene.2014.01.074
Laganà, A. et al. Discovery and characterization of the feline miRNAome. Sci. Rep. 7, 9263 (2017).
pubmed: 28835705
pmcid: 5569061
doi: 10.1038/s41598-017-10164-w
Wright, J. R., Calkins, E. & Humphrey, R. L. Potassium permanganate reaction in amyloidosis. Lab. Invest. 36, 274–281 (1977).
pubmed: 839739
Gandolfi, B. et al. COLQ variant associated with Devon Rex and Sphynx feline hereditary myopathy. Anim. Genet. 46, 711–715 (2015).
pubmed: 26374066
pmcid: 4637250
doi: 10.1111/age.12350
Buckley, R. M. et al. Werewolf, there wolf: variants in Hairless associated with hypotrichia and roaning in the Lykoi cat breed. Genes 11, 682 (2020).
pmcid: 7348984
doi: 10.3390/genes11060682
Buckley, R. M. et al. A new domestic cat genome assembly based on long sequence reads empowers feline genomic medicine and identifies a novel gene for dwarfism. PLoS Genet. 16, e1008926 (2020).
pubmed: 33090996
pmcid: 7581003
doi: 10.1371/journal.pgen.1008926
McLaren, W. et al. The Ensembl Variant Effect Predictor. Genome Biol. 17, 122 (2016).
pubmed: 27268795
pmcid: 4893825
doi: 10.1186/s13059-016-0974-4
Vernocchi, V. et al. Sperm ubiquitination in epididymal feline semen. Theriogenology 82, 636–642 (2014).
pubmed: 24999010
doi: 10.1016/j.theriogenology.2014.06.002
Tedeschi, G. et al. Protein pattern of Xenopus laevis embryos grown in simulated microgravity. Cell Biol. Int. 35, 249–258 (2011).
pubmed: 20946105
doi: 10.1042/CBI20100248
Galli, A. et al. Cluster-assembled zirconia substrates promote long-term differentiation and functioning of human islets of Langerhans. Sci. Rep. 8, 9979 (2018).
pubmed: 29967323
pmcid: 6028636
doi: 10.1038/s41598-018-28019-3
Migliaccio, O. et al. Living in future ocean acidification, physiological adaptive responses of the immune system of sea urchins resident at a CO2 vent system. Sci. Total Environ. 672, 938–950 (2019).
pubmed: 30981169
doi: 10.1016/j.scitotenv.2019.04.005
Mi, H., Muruganujan, A., Casagrande, J. T. & Thomas, P. D. Large-scale gene function analysis with the PANTHER classification system. Nat. Protoc. 8, 1551–1566 (2013).
pubmed: 23868073
pmcid: 6519453
doi: 10.1038/nprot.2013.092
Huang, D. W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).
doi: 10.1038/nprot.2008.211
Tedeschi, G. et al. Proteomic profile of maternal-aged blastocoel fluid suggests a novel role for ubiquitin system in blastocyst quality. J. Assist. Reprod. Genet. 34, 225–238 (2017).
pubmed: 27924460
doi: 10.1007/s10815-016-0842-x
Vizcaíno, J. A. et al. 2016 update of the PRIDE database and its related tools. Nucl. Acids Res. 44, D447-456 (2016).
pubmed: 26527722
doi: 10.1093/nar/gkv1145
Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet j. 17, 10 (2011).
doi: 10.14806/ej.17.1.200
Friedländer, M. R., Mackowiak, S. D., Li, N., Chen, W. & Rajewsky, N. miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucl. Acids Res. 40, 37–52 (2012).
pubmed: 21911355
doi: 10.1093/nar/gkr688
Griffiths-Jones, S. miRBase: microRNA sequences, targets and gene nomenclature. Nucl. Acids Res. 34, D140–D144 (2006).
pubmed: 16381832
doi: 10.1093/nar/gkj112
Fan, Y. et al. miRNet - dissecting miRNA-target interactions and functional associations through network-based visual analysis. Nucl. Acids Res. 44, W135–W141 (2016).
pubmed: 27105848
doi: 10.1093/nar/gkw288
pmcid: 4987881
Riffo-Campos, Á., Riquelme, I. & Brebi-Mieville, P. Tools for sequence-based miRNA target prediction: what to choose?. Int. J. Mol. Sci. 17, 1987 (2016).
pmcid: 5187787
doi: 10.3390/ijms17121987
Moszyńska, A., Gebert, M., Collawn, J. F. & Bartoszewski, R. SNPs in microRNA target sites and their potential role in human disease. Open Biol. 7, 170019 (2017).
pubmed: 28381629
pmcid: 5413909
doi: 10.1098/rsob.170019
Tasaki, M. et al. Effect of age and sex differences on wild-type transthyretin amyloid formation in familial amyloidotic polyneuropathy: a proteomic approach. Int. J. Cardiol 170, 69–74 (2013).
pubmed: 24182678
doi: 10.1016/j.ijcard.2013.10.033
Lipinski, M. J. et al. The ascent of cat breeds: genetic evaluations of breeds and worldwide random-bred populations. Genomics 91, 12–21 (2008).
pubmed: 18060738
doi: 10.1016/j.ygeno.2007.10.009
Ugurlu, S., Egeli, B. H., Bolayirli, I. M. & Ozdogan, H. Soluble TREM-1 levels in Familial Mediterranean Fever related AA-amyloidosis. Immunol. Invest. 22, 1–9 (2020).
Mereuta, O. M. et al. Systemic AA amyloidosis as a unique manifestation of a combined mutation of TNFRSF1A and MEFV genes. Amyloid 20, 122–126 (2013).
pubmed: 23461592
doi: 10.3109/13506129.2013.775119
Awdishu, L. et al. Identification of maltase glucoamylase as a biomarker of acute kidney injury in patients with cirrhosis. Crit. Care Res. Pract. 2019, 1–8 (2019).
doi: 10.1155/2019/5912804
Zhou, W. et al. FAN1 mutations cause karyomegalic interstitial nephritis, linking chronic kidney failure to defective DNA damage repair. Nat. Genet. 44, 910–915 (2012).
pubmed: 22772369
pmcid: 3412140
doi: 10.1038/ng.2347
Picken, M. M. Non-light-chain immunoglobulin amyloidosis: time to expand or refine the spectrum to include light+heavy chain amyloidosis?. Kidney Int. 83, 353–356 (2013).
pubmed: 23446254
doi: 10.1038/ki.2012.433
Eulitz, M., Weiss, D. T. & Solomon, A. Immunoglobulin heavy-chain-associated amyloidosis. Proc Natl Acad Sci USA 87, 6542–6546 (1990).
pubmed: 2118650
doi: 10.1073/pnas.87.17.6542
pmcid: 54572
Paltrinieri, S., Sironi, G., Giori, L., Faverzani, S. & Longeri, M. Changes in serum and urine SAA concentrations and qualitative and quantitative proteinuria in Abyssinian cats with familial amyloidosis: a five-year longitudinal study (2009–2014). J. Vet. Intern. Med. 29, 505–512 (2015).
pubmed: 25776129
pmcid: 4895502
doi: 10.1111/jvim.12561
Simons, J. P. et al. Pathogenetic mechanisms of amyloid A amyloidosis. Proc. Natl. Acad. Sci. 110, 16115–16120 (2013).
pubmed: 23959890
doi: 10.1073/pnas.1306621110
pmcid: 3791773
Westermark, G. T., Fändrich, M. & Westermark, P. AA amyloidosis: pathogenesis and targeted therapy. Annu Rev Pathol. 10, 321–344 (2015).
pubmed: 25387054
doi: 10.1146/annurev-pathol-020712-163913
Brandan, E. & Inestrosa, N. C. Extracellular matrix components and amyloid in neuritic plaques of Alzheimer’s disease. Gen. Pharmacol. 24, 1063–1068 (1993).
pubmed: 8270163
doi: 10.1016/0306-3623(93)90350-7
Bronfman, F. C., Soto, C., Tapia, L., Tapia, V. & Inestrosa, N. C. Extracellular matrix regulates the amount of the beta-amyloid precursor protein and its amyloidogenic fragments. J. Cell. Physiol. 166, 360–369 (1996).
pubmed: 8591996
doi: 10.1002/(SICI)1097-4652(199602)166:2<360::AID-JCP14>3.0.CO;2-F
Clark, E. A. & Brugge, J. S. Integrins and signal transduction pathways: the road taken. Science 268, 233–239 (1995).
pubmed: 7716514
doi: 10.1126/science.7716514
Exley, C. ATP-promoted amyloidosis of an amyloid beta peptide. NeuroReport 8, 3411–3414 (1997).
pubmed: 9351682
doi: 10.1097/00001756-199710200-00043
Gastineau, D. A., Gertz, M. A., Daniels, T. M., Kyle, R. A. & Bowie, E. J. Inhibitor of the thrombin time in systemic amyloidosis: a common coagulation abnormality. Blood 77, 2637–2640 (1991).
pubmed: 1904284
doi: 10.1182/blood.V77.12.2637.2637
Choufani, E. B. et al. Acquired factor X deficiency in patients with amyloid light-chain amyloidosis: incidence, bleeding manifestations, and response to high-dose chemotherapy. Blood 97, 1885–1887 (2001).
pubmed: 11238135
doi: 10.1182/blood.V97.6.1885
Liu, L., Komatsu, H., Murray, I. V. J. & Axelsen, P. H. Promotion of amyloid beta protein misfolding and fibrillogenesis by a lipid oxidation product. J. Mol. Biol. 377, 1236–1250 (2008).
pubmed: 18304576
doi: 10.1016/j.jmb.2008.01.057
Pathak, B. K., Mondal, S., Banerjee, S., Ghosh, A. N. & Barat, C. Sequestration of ribosome during protein aggregate formation: contribution of ribosomal RNA. Sci. Rep. 7, 42017 (2017).
pubmed: 28169307
pmcid: 5294636
doi: 10.1038/srep42017
Xu, G., Stevens, S. M., Moore, B. D., McClung, S. & Borchelt, D. R. Cytosolic proteins lose solubility as amyloid deposits in a transgenic mouse model of Alzheimer-type amyloidosis. Hum. Mol. Genet. 22, 2765–2774 (2013).
pubmed: 23512986
pmcid: 3690965
doi: 10.1093/hmg/ddt121
Huang, Y., Ren, H. T., Xiong, J. L., Gao, X. C. & Sun, X. H. Identification and characterization of known and novel microRNAs in three tissues of Chinese giant salamander base on deep sequencing approach. Genomics 109, 258–264 (2017).
pubmed: 28476431
doi: 10.1016/j.ygeno.2017.04.007
Adams, D., Koike, H., Slama, M. & Coelho, T. Hereditary transthyretin amyloidosis: a model of medical progress for a fatal disease. Nat. Rev. Neurol. 15, 387–404 (2019).
pubmed: 31209302
doi: 10.1038/s41582-019-0210-4
Winter, R., Kühn, U., Hause, G. & Schwarz, E. Polyalanine-independent conformational conversion of nuclear poly(A)-binding protein 1 (PABPN1). J. Biol. Chem. 287, 22662–22671 (2012).
pubmed: 22570486
pmcid: 3391145
doi: 10.1074/jbc.M112.362327
Stix, B. et al. Proteolysis of AA amyloid fibril proteins by matrix metalloproteinases-1, -2, and -3. Am. J. Pathol. 159, 561–570 (2001).
pubmed: 11485914
pmcid: 1850551
doi: 10.1016/S0002-9440(10)61727-0
Struck, A. K. et al. Complex segregation analysis of familial amyloidosis in Oriental shorthair cats. Vet J. 265, 105552 (2020).
pubmed: 33129552
doi: 10.1016/j.tvjl.2020.105552
Miyazaki, S., Kadota, A., Mitsui, I. & Murakami, T. Amyloid signature proteins in feline amyloidosis. J. Comp. Pathol. 177, 10–17 (2020).
pubmed: 32505236
doi: 10.1016/j.jcpa.2020.03.007