A 127 kb truncating deletion of PGRMC1 is a novel cause of X-linked isolated paediatric cataract.


Journal

European journal of human genetics : EJHG
ISSN: 1476-5438
Titre abrégé: Eur J Hum Genet
Pays: England
ID NLM: 9302235

Informations de publication

Date de publication:
08 2021
Historique:
received: 04 12 2020
accepted: 02 04 2021
revised: 10 03 2021
pubmed: 20 4 2021
medline: 17 3 2022
entrez: 19 4 2021
Statut: ppublish

Résumé

Inherited paediatric cataract is a rare Mendelian disease that results in visual impairment or blindness due to a clouding of the eye's crystalline lens. Here we report an Australian family with isolated paediatric cataract, which we had previously mapped to Xq24. Linkage at Xq24-25 (LOD = 2.53) was confirmed, and the region refined with a denser marker map. In addition, two autosomal regions with suggestive evidence of linkage were observed. A segregating 127 kb deletion (chrX:g.118373226_118500408del) in the Xq24-25 linkage region was identified from whole-genome sequencing data. This deletion completely removed a commonly deleted long non-coding RNA gene LOC101928336 and truncated the protein coding progesterone receptor membrane component 1 (PGRMC1) gene following exon 1. A literature search revealed a report of two unrelated males with non-syndromic intellectual disability, as well as congenital cataract, who had contiguous gene deletions that accounted for their intellectual disability but also disrupted the PGRMC1 gene. A morpholino-induced pgrmc1 knockdown in a zebrafish model produced significant cataract formation, supporting a role for PGRMC1 in lens development and cataract formation. We hypothesise that the loss of PGRMC1 causes cataract through disrupted PGRMC1-CYP51A1 protein-protein interactions and altered cholesterol biosynthesis. The cause of paediatric cataract in this family is the truncating deletion of PGRMC1, which we report as a novel cataract gene.

Identifiants

pubmed: 33867527
doi: 10.1038/s41431-021-00889-8
pii: 10.1038/s41431-021-00889-8
pmc: PMC8385038
doi:

Substances chimiques

CYP51A1 protein, human 0
Membrane Proteins 0
PGRMC1 protein, human 0
Receptors, Progesterone 0
Sterol 14-Demethylase EC 1.14.14.154

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1206-1215

Informations de copyright

© 2021. The Author(s).

Références

Wu X, Long E, Lin H, Liu Y. Prevalence and epidemiological characteristics of congenital cataract: a systematic review and meta-analysis. Sci Rep. 2016;6:28564.
pubmed: 27334676 pmcid: 4917826 doi: 10.1038/srep28564
Wirth MG, Russell-Eggitt IM, Craig JE, Elder JE, Mackey DA. Aetiology of congenital and paediatric cataract in an Australian population. Br J Ophthalmol. 2002;86:782–6.
pubmed: 12084750 pmcid: 1771196 doi: 10.1136/bjo.86.7.782
Shiels A, Hejtmancik JF. Genetic origins of cataract. Arch Ophthalmol. 2007;125:165–73.
pubmed: 17296892 doi: 10.1001/archopht.125.2.165
Francois J. Genetics of cataract. Ophthalmologica. 1982;184:61–71.
pubmed: 7063172 doi: 10.1159/000309186
Merin S, Crawford JS. The etiology of congenital cataracts. A survey of 386 cases. Can J Ophthalmol. 1971;6:178–82.
pubmed: 4254831
Shiels A, Bennett TM, Hejtmancik JF. Cat-Map: putting cataract on the map. Mol Vis. 2010;16:2007–15.
pubmed: 21042563 pmcid: 2965572
Reis LM, Semina EV. Genetic landscape of isolated pediatric cataracts: extreme heterogeneity and variable inheritance patterns within genes. Hum Genet. 2019;138:847–63.
pubmed: 30187164 doi: 10.1007/s00439-018-1932-x
Coccia M, Brooks SP, Webb TR, Christodoulou K, Wozniak IO, Murday V, et al. X-linked cataract and Nance-Horan syndrome are allelic disorders. Hum Mol Genet. 2009;18:2643–55.
pubmed: 19414485 pmcid: 2701339 doi: 10.1093/hmg/ddp206
Francis PJ, Berry V, Hardcastle AJ, Maher ER, Moore AT, Bhattacharya SS. A locus for isolated cataract on human Xp. J Med Genet. 2002;39:105–9.
pubmed: 11836358 pmcid: 1735039 doi: 10.1136/jmg.39.2.105
Brooks S, Ebenezer N, Poopalasundaram S, Maher E, Francis P, Moore A, et al. Refinement of the X-linked cataract locus (CXN) and gene analysis for CXN and Nance-Horan syndrome (NHS). Ophthalmic Genet. 2004;25:121–31.
pubmed: 15370543 doi: 10.1080/13816810490514360
Burdon KP, McKay JD, Sale MM, Russell-Eggitt IM, Mackey DA, Wirth MG, et al. Mutations in a novel gene, NHS, cause the pleiotropic effects of Nance-Horan syndrome, including severe congenital cataract, dental anomalies, and mental retardation. Am J Hum Genet. 2003;73:1120–30.
pubmed: 14564667 pmcid: 1180491 doi: 10.1086/379381
Craig JE, Friend KL, Gecz J, Rattray KM, Troski M, Mackey DA, et al. A novel locus for X-linked congenital cataract on Xq24. Mol Vis. 2008;14:721–6.
pubmed: 18431456 pmcid: 2324122
Mitchell P, Smith W, Attebo K, Healey PR. Prevalence of open-angle glaucoma in Australia. The Blue Mountains Eye Study. Ophthalmology. 1996;103:1661–9.
pubmed: 8874440 doi: 10.1016/S0161-6420(96)30449-1
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81:559–75.
pubmed: 17701901 pmcid: 1950838 doi: 10.1086/519795
Burdon KP, Fogarty RD, Shen W, Abhary S, Kaidonis G, Appukuttan B, et al. Genome-wide association study for sight-threatening diabetic retinopathy reveals association with genetic variation near the GRB2 gene. Diabetologia. 2015;58:2288–97.
pubmed: 26188370 doi: 10.1007/s00125-015-3697-2
Baron RV, Kollar C, Mukhopadhyay N, Weeks DE. Mega2: validated data-reformatting for linkage and association analyses. Source Code Biol Med. 2014;9:26.
pubmed: 25687422 pmcid: 4269913 doi: 10.1186/s13029-014-0026-y
Baron RV, Kollar CP, Mukhopadhyay N, Almasy N, Schroeder M, Mulvihill WP, et al. Mega2 (Version 4.9.2) 2015. Available from: https://watson.hgen.pitt.edu/mega2.html .
Abecasis GR, Cherny SS, Cookson WO, Cardon LR. Merlin-rapid analysis of dense genetic maps using sparse gene flow trees. Nat Genet. 2002;30:97–101.
pubmed: 11731797 doi: 10.1038/ng786
Abecasis GR, Wigginton JE. Handling marker-marker linkage disequilibrium: pedigree analysis with clustered markers. Am J Hum Genet. 2005;77:754–67.
pubmed: 16252236 pmcid: 1271385 doi: 10.1086/497345
Drmanac R, Sparks AB, Callow MJ, Halpern AL, Burns NL, Kermani BG, et al. Human genome sequencing using unchained base reads on self-assembling DNA nanoarrays. Science. 2010;327:78–81.
pubmed: 19892942 doi: 10.1126/science.1181498
Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38:e164.
pubmed: 20601685 pmcid: 2938201 doi: 10.1093/nar/gkq603
Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinforma. 2012;13:134.
doi: 10.1186/1471-2105-13-134
Westerfield M. The zebrafish book: a guide for the laboratory use of zebrafish (Danio rerio). Eugene: University of Oregon Press, 2000.
Scott EK, Mason L, Arrenberg AB, Ziv L, Gosse NJ, Xiao T, et al. Targeting neural circuitry in zebrafish using GAL4 enhancer trapping. Nat Methods. 2007;4:323–6.
pubmed: 17369834 doi: 10.1038/nmeth1033
Scott EK, Baier H. The cellular architecture of the larval zebrafish tectum, as revealed by gal4 enhancer trap lines. Front Neural Circuits. 2009;3:13.
pubmed: 19862330 pmcid: 2763897 doi: 10.3389/neuro.04.013.2009
Aizen J, Pang Y, Harris C, Converse A, Zhu Y, Aguirre MA, et al. Roles of progesterone receptor membrane component 1 and membrane progestin receptor alpha in regulation of zebrafish oocyte maturation. Gen Comp Endocrinol. 2018;263:51–61.
pubmed: 29649418 pmcid: 6480306 doi: 10.1016/j.ygcen.2018.04.009
Li X, Rhee DK, Malhotra R, Mayeur C, Hurst LA, Ager E, et al. Progesterone receptor membrane component-1 regulates hepcidin biosynthesis. J Clin Investig. 2016;126:389–401.
pubmed: 26657863 doi: 10.1172/JCI83831
Froger A, Clemens D, Kalman K, Nemeth-Cahalan KL, Schilling TF, Hall JE. Two distinct aquaporin 0s required for development and transparency of the zebrafish lens. Investig Ophthalmol Vis Sci. 2010;51:6582–92.
doi: 10.1167/iovs.10-5626
Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9:671–5.
pubmed: 22930834 pmcid: 5554542 doi: 10.1038/nmeth.2089
Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39:175–91.
Ng PC, Henikoff S. Predicting deleterious amino acid substitutions. Genome Res. 2001;11:863–74.
pubmed: 11337480 pmcid: 311071 doi: 10.1101/gr.176601
Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, et al. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7:248–9.
pubmed: 20354512 pmcid: 2855889 doi: 10.1038/nmeth0410-248
Lizio M, Harshbarger J, Shimoji H, Severin J, Kasukawa T, Sahin S, et al. Gateways to the FANTOM5 promoter level mammalian expression atlas. Genome Biol. 2015;16:22.
pubmed: 25723102 pmcid: 4310165 doi: 10.1186/s13059-014-0560-6
MacDonald JR, Ziman R, Yuen RK, Feuk L, Scherer SW. The Database of Genomic Variants: a curated collection of structural variation in the human genome. Nucleic Acids Res. 2014;42:D986–92.
pubmed: 24174537 doi: 10.1093/nar/gkt958
Wong LP, Ong RT, Poh WT, Liu X, Chen P, Li R, et al. Deep whole-genome sequencing of 100 southeast Asian Malays. Am J Hum Genet. 2013;92:52–66.
pubmed: 23290073 pmcid: 3542459 doi: 10.1016/j.ajhg.2012.12.005
Abugessaisa I, Shimoji H, Sahin S, Kondo A, Harshbarger J, Lizio M, et al. FANTOM5 transcriptome catalog of cellular states based on Semantic MediaWiki. Database. 2016;2016,baw105. https://doi.org/10.1093/database/baw105 .
Collins RL, Brand H, Karczewski KJ, Zhao X, Alföldi J, Francioli LC, et al. A structural variation reference for medical and population genetics. Nature. 2020;581:444–51.
pubmed: 32461652 pmcid: 7334194 doi: 10.1038/s41586-020-2287-8
Vandewalle J, Bauters M, Van Esch H, Belet S, Verbeeck J, Fieremans N, et al. The mitochondrial solute carrier SLC25A5 at Xq24 is a novel candidate gene for non-syndromic intellectual disability. Hum Genet. 2013;132:1177–85.
pubmed: 23783460 doi: 10.1007/s00439-013-1322-3
Hughes AL, Powell DW, Bard M, Eckstein J, Barbuch R, Link AJ, et al. Dap1/PGRMC1 binds and regulates cytochrome P450 enzymes. Cell Metab. 2007;5:143–9.
pubmed: 17276356 doi: 10.1016/j.cmet.2006.12.009
Asperger H, Stamm N, Gierke B, Pawlak M, Hofmann U, Zanger UM, et al. Progesterone receptor membrane component 1 regulates lipid homeostasis and drives oncogenic signaling resulting in breast cancer progression. Breast Cancer Res. 2020;22:75.
pubmed: 32660617 pmcid: 7359014 doi: 10.1186/s13058-020-01312-8
Nebert DW, Russell DW. Clinical importance of the cytochromes P450. Lancet. 2002;360:1155–62.
pubmed: 12387968 doi: 10.1016/S0140-6736(02)11203-7
Aldahmesh MA, Khan AO, Mohamed JY, Hijazi H, Al-Owain M, Alswaid A, et al. Genomic analysis of pediatric cataract in Saudi Arabia reveals novel candidate disease genes. Genet Med. 2012;14:955–62.
pubmed: 22935719 doi: 10.1038/gim.2012.86
Patel N, Anand D, Monies D, Maddirevula S, Khan AO, Algoufi T, et al. Novel phenotypes and loci identified through clinical genomics approaches to pediatric cataract. Hum Genet. 2017;136:205–25.
pubmed: 27878435 doi: 10.1007/s00439-016-1747-6
Gillespie RL, O’Sullivan J, Ashworth J, Bhaskar S, Williams S, Biswas S, et al. Personalized diagnosis and management of congenital cataract by next-generation sequencing. Ophthalmology. 2014;121:2124–37.e1-2.
pubmed: 25148791 doi: 10.1016/j.ophtha.2014.06.006
Mori M, Li G, Abe I, Nakayama J, Guo Z, Sawashita J, et al. Lanosterol synthase mutations cause cholesterol deficiency-associated cataracts in the Shumiya cataract rat. J Clin Investig. 2006;116:395–404.
pubmed: 16440058 pmcid: 1350995 doi: 10.1172/JCI20797
Zhao L, Chen XJ, Zhu J, Xi YB, Yang X, Hu LD, et al. Lanosterol reverses protein aggregation in cataracts. Nature. 2015;523:607–11.
pubmed: 26200341 doi: 10.1038/nature14650
Widomska J, Subczynski WK, Mainali L, Raguz M. Cholesterol bilayer domains in the eye lens health: a review. Cell Biochem Biophysics. 2017;75:387–98.
doi: 10.1007/s12013-017-0812-7

Auteurs

Johanna L Jones (JL)

Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia. johannaj@utas.edu.au.

Mark A Corbett (MA)

Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia.

Elise Yeaman (E)

Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia.

Duran Zhao (D)

Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia.

Jozef Gecz (J)

Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia.

Robert J Gasperini (RJ)

School of Medicine, University of Tasmania, Hobart, TAS, Australia.

Jac C Charlesworth (JC)

Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia.

David A Mackey (DA)

Centre for Ophthalmology and Visual Science, University of Western Australia, Lions Eye Institute, Perth, WA, Australia.

James E Elder (JE)

Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia.

Jamie E Craig (JE)

Department of Ophthalmology, Flinders University, Bedford Park, SA, Australia.

Kathryn P Burdon (KP)

Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia.
Department of Ophthalmology, Flinders University, Bedford Park, SA, Australia.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH