Glioblastomas with primitive neuronal component harbor a distinct methylation and copy-number profile with inactivation of TP53, PTEN, and RB1.
Brain Neoplasms
/ genetics
Chromosomes, Human, Pair 1
/ genetics
Chromosomes, Human, Pair 7
/ genetics
Cohort Studies
Cyclin-Dependent Kinase Inhibitor p16
/ genetics
DNA Copy Number Variations
DNA Methylation
Female
Gene Deletion
Glial Fibrillary Acidic Protein
/ biosynthesis
Glioblastoma
/ genetics
Humans
Male
Middle Aged
Neuroectodermal Tumors, Primitive
/ genetics
PTEN Phosphohydrolase
/ genetics
Retinoblastoma Binding Proteins
/ genetics
Tumor Suppressor Protein p53
/ genetics
Ubiquitin-Protein Ligases
/ genetics
Classification
DNA methylation
GBM
PNET
Phenotype
Plasticity
Journal
Acta neuropathologica
ISSN: 1432-0533
Titre abrégé: Acta Neuropathol
Pays: Germany
ID NLM: 0412041
Informations de publication
Date de publication:
07 2021
07 2021
Historique:
received:
18
02
2021
accepted:
26
03
2021
revised:
24
03
2021
pubmed:
21
4
2021
medline:
11
1
2022
entrez:
20
4
2021
Statut:
ppublish
Résumé
Glioblastoma IDH-wildtype presents with a wide histological spectrum. Some features are so distinctive that they are considered as separate histological variants or patterns for the purpose of classification. However, these usually lack defined (epi-)genetic alterations or profiles correlating with this histology. Here, we describe a molecular subtype with overlap to the unique histological pattern of glioblastoma with primitive neuronal component. Our cohort consists of 63 IDH-wildtype glioblastomas that harbor a characteristic DNA methylation profile. Median age at diagnosis was 59.5 years. Copy-number variations and genetic sequencing revealed frequent alterations in TP53, RB1 and PTEN, with fewer gains of chromosome 7 and homozygous CDKN2A/B deletions than usually described for IDH-wildtype glioblastoma. Gains of chromosome 1 were detected in more than half of the cases. A poorly differentiated phenotype with frequent absence of GFAP expression, high proliferation index and strong staining for p53 and TTF1 often caused misleading histological classification as carcinoma metastasis or primitive neuroectodermal tumor. Clinically, many patients presented with leptomeningeal dissemination and spinal metastasis. Outcome was poor with a median overall survival of only 12 months. Overall, we describe a new molecular subtype of IDH-wildtype glioblastoma with a distinct histological appearance and genetic signature.
Identifiants
pubmed: 33876327
doi: 10.1007/s00401-021-02302-6
pii: 10.1007/s00401-021-02302-6
pmc: PMC8217054
doi:
Substances chimiques
CDKN2A protein, human
0
Cyclin-Dependent Kinase Inhibitor p16
0
GFAP protein, human
0
Glial Fibrillary Acidic Protein
0
RB1 protein, human
0
Retinoblastoma Binding Proteins
0
TP53 protein, human
0
Tumor Suppressor Protein p53
0
Ubiquitin-Protein Ligases
EC 2.3.2.27
PTEN Phosphohydrolase
EC 3.1.3.67
PTEN protein, human
EC 3.1.3.67
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
179-189Subventions
Organisme : Medical Research Council
ID : G0701018
Pays : United Kingdom
Organisme : Medical Research Council
ID : G1100578
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/N004272/1
Pays : United Kingdom
Références
Balanis NG, Sheu KM, Esedebe FN, Patel SJ, Smith BA, Park JW, et al. (2019) Pan-cancer convergence to a small-cell neuroendocrine phenotype that shares susceptibilities with hematological malignancies. Cancer Cell 36:17-34.e17. https://doi.org/10.1016/j.ccell.2019.06.005
doi: 10.1016/j.ccell.2019.06.005
pubmed: 31287989
pmcid: 6703903
Bieging KT, Mello SS, Attardi LD (2014) Unravelling mechanisms of p53-mediated tumour suppression. Nat Rev Cancer 14:359–370. https://doi.org/10.1038/nrc3711
doi: 10.1038/nrc3711
pubmed: 24739573
pmcid: 4049238
Bingle CD (1997) Thyroid transcription factor-1. Int J Biochem Cell Biol 29:1471–1473. https://doi.org/10.1016/s1357-2725(97)00007-1
doi: 10.1016/s1357-2725(97)00007-1
pubmed: 9570141
Brat DJ, Aldape K, Colman H, Holland EC, Louis DN, Jenkins RB, et al. (2018) cIMPACT-NOW update 3: recommended diagnostic criteria for “Diffuse astrocytic glioma, IDH-wildtype, with molecular features of glioblastoma, WHO grade IV.” Acta Neuropathol 136:805–810. https://doi.org/10.1007/s00401-018-1913-0
doi: 10.1007/s00401-018-1913-0
pubmed: 30259105
pmcid: 6204285
Capper D, Jones DTW, Sill M, Hovestadt V, Schrimpf D, Sturm D, et al. (2018) DNA methylation-based classification of central nervous system tumours. Nature 555:469–474. https://doi.org/10.1038/nature26000
doi: 10.1038/nature26000
pubmed: 29539639
pmcid: 6093218
Capper D, Stichel D, Sahm F, Jones DTW, Schrimpf D, Sill M, et al. (2018) Practical implementation of DNA methylation and copy-number-based CNS tumor diagnostics: the Heidelberg experience. Acta Neuropathol 136:181–210. https://doi.org/10.1007/s00401-018-1879-y
doi: 10.1007/s00401-018-1879-y
pubmed: 29967940
pmcid: 6060790
Comprehensive genomic characterization defines human glioblastoma genes and core pathways (2008). Nature 455:1061–1068. https://doi.org/10.1038/nature07385
Euskirchen P, Bielle F, Labreche K, Kloosterman WP, Rosenberg S, Daniau M, et al. (2017) Same-day genomic and epigenomic diagnosis of brain tumors using real-time nanopore sequencing. Acta Neuropathol 134:691–703. https://doi.org/10.1007/s00401-017-1743-5
doi: 10.1007/s00401-017-1743-5
pubmed: 28638988
pmcid: 5645447
Galloway M, Sim R (2007) TTF-1 staining in glioblastoma multiforme. Virchows Arch 451:109–111. https://doi.org/10.1007/s00428-007-0432-5
doi: 10.1007/s00428-007-0432-5
pubmed: 17562073
Henriquez NV, Forshew T, Tatevossian R, Ellis M, Richard-Loendt A, Rogers H, et al. (2013) Comparative expression analysis reveals lineage relationships between human and murine gliomas and a dominance of glial signatures during tumor propagation in vitro. Cancer Res 73:5834–5844. https://doi.org/10.1158/0008-5472.Can-13-1299
doi: 10.1158/0008-5472.Can-13-1299
pubmed: 23887970
Jacques TS, Swales A, Brzozowski MJ, Henriquez NV, Linehan JM, Mirzadeh Z, et al. (2010) Combinations of genetic mutations in the adult neural stem cell compartment determine brain tumour phenotypes. Embo J 29:222–235. https://doi.org/10.1038/emboj.2009.327
doi: 10.1038/emboj.2009.327
pubmed: 19927122
Kaplan KJ, Perry A (2007) Gliosarcoma with primitive neuroectodermal differentiation: case report and review of the literature. J Neurooncol 83:313–318. https://doi.org/10.1007/s11060-007-9331-5
doi: 10.1007/s11060-007-9331-5
pubmed: 17406789
Kastenhuber ER, Lowe SW (2017) Putting p53 in context. Cell 170:1062–1078. https://doi.org/10.1016/j.cell.2017.08.028
doi: 10.1016/j.cell.2017.08.028
pubmed: 28886379
pmcid: 5743327
Kepes JJ (2002) Gliosarcoma with areas of primitive neuroepithelial differentiation and extracranial metastasis. Clin Neuropathol 21:193–195 (author reply 195-196)
pubmed: 12143929
Koshy M, Villano JL, Dolecek TA, Howard A, Mahmood U, Chmura SJ, et al. (2012) Improved survival time trends for glioblastoma using the SEER 17 population-based registries. J Neurooncol 107:207–212. https://doi.org/10.1007/s11060-011-0738-7
doi: 10.1007/s11060-011-0738-7
pubmed: 21984115
Lazzaro D, Price M, de Felice M, Di Lauro R (1991) The transcription factor TTF-1 is expressed at the onset of thyroid and lung morphogenesis and in restricted regions of the foetal brain. Development (Cambridge, England) 113:1093–1104
doi: 10.1242/dev.113.4.1093
Li Y, Nichols MA, Shay JW, Xiong Y (1994) Transcriptional repression of the D-type cyclin-dependent kinase inhibitor p16 by the retinoblastoma susceptibility gene product pRb. Can Res 54:6078–6082
Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, et al. (2016) The 2016 world health organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131:803–820. https://doi.org/10.1007/s00401-016-1545-1
doi: 10.1007/s00401-016-1545-1
pubmed: 27157931
Mandel JJ, Yust-Katz S, Cachia D, Wu J, Liu D, de Groot JF, et al. (2014) Leptomeningeal dissemination in glioblastoma; an inspection of risk factors, treatment, and outcomes at a single institution. J Neurooncol 120:597–605. https://doi.org/10.1007/s11060-014-1592-1
doi: 10.1007/s11060-014-1592-1
pubmed: 25168214
Neftel C, Laffy J, Filbin MG, Hara T, Shore ME, Rahme GJ, et al. (2019) An integrative model of cellular states, plasticity, and genetics for glioblastoma. Cell 178:835-849.e821. https://doi.org/10.1016/j.cell.2019.06.024
doi: 10.1016/j.cell.2019.06.024
pubmed: 31327527
pmcid: 6703186
Northcott PA, Buchhalter I, Morrissy AS, Hovestadt V, Weischenfeldt J, Ehrenberger T, et al. (2017) The whole-genome landscape of medulloblastoma subtypes. Nature 547:311–317. https://doi.org/10.1038/nature22973
doi: 10.1038/nature22973
pubmed: 28726821
pmcid: 5905700
Noushmehr H, Weisenberger DJ, Diefes K, Phillips HS, Pujara K, Berman BP, et al. (2010) Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 17:510–522. https://doi.org/10.1016/j.ccr.2010.03.017
doi: 10.1016/j.ccr.2010.03.017
pubmed: 20399149
pmcid: 2872684
Ostrom QT, Patil N, Cioffi G, Waite K, Kruchko C, Barnholtz-Sloan JS (2020) CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2013–2017. Neuro-Oncol 22:iv1–iv96. https://doi.org/10.1093/neuonc/noaa200
doi: 10.1093/neuonc/noaa200
pubmed: 33123732
Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P, et al. (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321:1807–1812. https://doi.org/10.1126/science.1164382
doi: 10.1126/science.1164382
pubmed: 18772396
pmcid: 2820389
Perry A, Miller CR, Gujrati M, Scheithauer BW, Zambrano SC, Jost SC, et al. (2009) Malignant gliomas with primitive neuroectodermal tumor-like components: a clinicopathologic and genetic study of 53 cases. Brain Pathol 19:81–90. https://doi.org/10.1111/j.1750-3639.2008.00167.x
doi: 10.1111/j.1750-3639.2008.00167.x
pubmed: 18452568
Rayess H, Wang MB, Srivatsan ES (2012) Cellular senescence and tumor suppressor gene p16. Int J Cancer 130:1715–1725. https://doi.org/10.1002/ijc.27316
doi: 10.1002/ijc.27316
pubmed: 22025288
Reuss DE, Sahm F, Schrimpf D, Wiestler B, Capper D, Koelsche C, et al. (2015) ATRX and IDH1-R132H immunohistochemistry with subsequent copy number analysis and IDH sequencing as a basis for an “integrated” diagnostic approach for adult astrocytoma, oligodendroglioma and glioblastoma. Acta Neuropathol 129:133–146. https://doi.org/10.1007/s00401-014-1370-3
doi: 10.1007/s00401-014-1370-3
pubmed: 25427834
Sahm F, Schrimpf D, Jones DT, Meyer J, Kratz A, Reuss D, et al. (2016) Next-generation sequencing in routine brain tumor diagnostics enables an integrated diagnosis and identifies actionable targets. Acta Neuropathol 131:903–910. https://doi.org/10.1007/s00401-015-1519-8
doi: 10.1007/s00401-015-1519-8
pubmed: 26671409
Sahm F, Schrimpf D, Stichel D, Jones DTW, Hielscher T, Schefzyk S, et al. (2017) DNA methylation-based classification and grading system for meningioma: a multicentre, retrospective analysis. Lancet Oncol 18:682–694. https://doi.org/10.1016/s1470-2045(17)30155-9
doi: 10.1016/s1470-2045(17)30155-9
pubmed: 28314689
Shintaku M, Yoneda H, Hirato J, Nagaishi M, Okabe H (2013) Gliosarcoma with ependymal and PNET-like differentiation. Clin Neuropathol 32:508–514. https://doi.org/10.5414/np300624
doi: 10.5414/np300624
pubmed: 23863343
Silbergeld DL, Rostomily RC, Alvord EC Jr (1991) The cause of death in patients with glioblastoma is multifactorial: clinical factors and autopsy findings in 117 cases of supratentorial glioblastoma in adults. J Neurooncol 10:179–185. https://doi.org/10.1007/bf00146880
doi: 10.1007/bf00146880
pubmed: 1654403
Song X, Andrew Allen R, Terence Dunn S, Fung KM, Farmer P, Gandhi S, et al. (2011) Glioblastoma with PNET-like components has a higher frequency of isocitrate dehydrogenase 1 (IDH1) mutation and likely a better prognosis than primary glioblastoma. Int J Clin Exp Pathol 4:651–660
pubmed: 22076165
pmcid: 3209605
Sturm D, Witt H, Hovestadt V, Khuong-Quang DA, Jones DT, Konermann C, et al. (2012) Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 22:425–437. https://doi.org/10.1016/j.ccr.2012.08.024
doi: 10.1016/j.ccr.2012.08.024
pubmed: 23079654
Suvà ML, Tirosh I (2020) The glioma stem cell model in the era of single-cell genomics. Cancer Cell 37:630–636. https://doi.org/10.1016/j.ccell.2020.04.001
doi: 10.1016/j.ccell.2020.04.001
pubmed: 32396858
pmcid: 32396858
Suwala AK, Stichel D, Schrimpf D, Kloor M, Wefers AK, Reinhardt A, et al. (2020) Primary mismatch repair deficient IDH-mutant astrocytoma (PMMRDIA) is a distinct type with a poor prognosis. Acta Neuropathol. https://doi.org/10.1007/s00401-020-02243-6
doi: 10.1007/s00401-020-02243-6
pubmed: 33216206
pmcid: 7785563
Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, et al. (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17:98–110. https://doi.org/10.1016/j.ccr.2009.12.020
doi: 10.1016/j.ccr.2009.12.020
pubmed: 20129251
pmcid: 2818769
Watanabe K, Sato K, Biernat W, Tachibana O, von Ammon K, Ogata N, et al. (1997) Incidence and timing of p53 mutations during astrocytoma progression in patients with multiple biopsies. Clin Cancer Res: Off J Am Assoc Cancer Res 3:523–530
Xu G, Zheng H, Li JY (2019) Next-generation whole exome sequencing of glioblastoma with a primitive neuronal component. Brain Tumor Pathol 36:129–134. https://doi.org/10.1007/s10014-019-00334-1
doi: 10.1007/s10014-019-00334-1
pubmed: 30715630