Using hot steam exposure to reveal mechanical properties of spaghetti beams and columns.
Young's modulus
diffusion constant
hot steam exposure
partial Fickian
spaghetti
Journal
Journal of food science
ISSN: 1750-3841
Titre abrégé: J Food Sci
Pays: United States
ID NLM: 0014052
Informations de publication
Date de publication:
May 2021
May 2021
Historique:
revised:
09
03
2021
received:
12
08
2020
accepted:
14
03
2021
pubmed:
23
4
2021
medline:
5
6
2021
entrez:
22
4
2021
Statut:
ppublish
Résumé
We demonstrate that the bending evolution of spaghetti beams and columns by hot steam reveals several food-related properties: time-dependent Young modulus, the diffusion coefficient of steam molecules penetrating the material, the partial Fickian behavior of molecule diffusion, and a logistic-like evolution of the column-bending angle. The time-lapse images of the spaghetti strands were recorded for estimating the strand's curvatures and, from these estimates, the strand's Young's moduli were calculated. Freely hung cantilever spaghetti beams and columns were exposed to hot steam from boiling water so that the images were recorded in real time while the beam or column bent undisturbedly. It is observed that the Young modulus decreased exponentially with time after an appropriate considerable period of exposure. The diffusion coefficient of water molecules can be estimated from the bending evolution, and our data matched with the experimental data reported by others. The method presented in this paper provides an alternative method for estimating the diffusion coefficient of vapor molecules penetrating the materials. PRACTICAL APPLICATION: The elastic modulus is estimated by merely measuring the angle made by the spaghetti's free end in the form of a cantilever beam or column. The measurement is performed remotely. Using a simple calculation, the error of estimation is less than 5%. The chef can use the simulated result for estimating the "doneness" of the spaghetti being boiled or steamed by clamping a piece of spaghetti horizontally and guessing the angle of the free end.
Identifiants
pubmed: 33884629
doi: 10.1111/1750-3841.15722
doi:
Substances chimiques
Steam
0
Water
059QF0KO0R
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1672-1680Informations de copyright
© 2021 Institute of Food Technologists®.
Références
Abdullah, M. (2009). Introduction to statistical physics. Rezeki Putra.
Amalia, N., Yuliza, E., Margaretta, D. O., Utami, F., Surtiyeni, N., Viridi, S., & Abdullah, M. (2018). A novel method for characterizing temperature-dependent elastic modulus and glass transition temperature by processing the images of bending cantilever slender beams at different temperatures. AIP Advances, 8, 115201.
Audoly, B., & Neukirch, S. (2005). Fragmentation of rods by cascading cracks: Why spaghetti does not break in half? Physical Review Letters, 95, 095505.
Baiano, A., Conte, A., & Del Nobile, M. A. (2006). Influence of drying temperature on the spaghetti cooking quality. Journal of Food Engineering, 76(3), 341-347.
Bernin, D., Steglich, T., Röding, M., Moldin, A., Topgaard, D., & Langton, M. (2014). Multi-scale characterization of pasta during cooking using microscopy and real-time magnetic resonance imaging. Food Research International, 66, 132-139.
Cafieri, S., Mastromatteo, M., Chill, S., & Del Nobile, M. A. (2010). Modeling the mechanical properties of pasta cooked at different times. Journal of Food Engineering, 100(2), 336-342.
Chen, Z., Sagis, L., Legger, A., Linssen, J. P. H., Schols, H. A., & Voragen, A. G. J. (2002). Evaluation of starch noodles made from three typical Chinese sweet-potato starches. Journal of Food Science, 67(9), 3342-3347.
Chillo, S., Laverse, J., Falcone, P. M., & Del Nobile, M. A. (2008). Quality of spaghetti in base Amaranthus whole meal flour added with quinoa, broad bean and chickpea. Journal of Food Engineering, 84(1), 101-107.
Chillo, S., Laverse, J., Falcone, P., Protopapa, A., & Del Nobile, M. A. (2008). Influence of the addition of buckwheat flour and durum wheat bran on spaghetti quality. Journal of Cereal Science, 47(2), 144-152.
Cuq, B., Goncalves, F., Mas, J. F., Vareille, L., & Abecassis, J. (2003). Effects of moisture content and temperature of spaghetti on their mechanical properties. Journal of Food Engineering, 59(1), 51-60.
Del Nobile, M. A., Baiano, A., Conte, A., & Mocci, G. (2005). Influence of protein content on spaghetti cooking quality. Journal of Cereal Science, 41(3), 347-356.
Del Nobile, M. A., Buonocore, G. G., Panizza, A., & Gambacorta, G. (2003). Modeling the spaghetti hydration kinetics during cooking and overcooking. Journal of Food Science, 68(4), 1316-1323.
Del Nobile, M. A., & Massera, M. (2000). Modeling of water sorption kinetics in spaghetti during overcooking. Cereal Chemistry, 77(5), 615-619.
Del Nobile, M. A., & Massera, M. (2002). A method to evaluate the extent of residual deformations in dry spaghetti. Journal of Food Engineering, 55(3), 237-245.
Doulia, D., Tzia, K., & Gekas, V. (2000). A knowledge base for the apparent mass diffusion coefficient (DEFF) of foods. International Journal of Food Properties, 3(1), 1-14.
Garnier, K. B., Dumas, R., Rumelhart, C., & Arlot, M. (1999). Mechanical characterization in shear of human femoral cancellous bone: torsion and shear tests. Medical Engineering & Physics, 21(9), 641-649.
Gladden, J. R., Handzy, N. Z., Belmonte, A., & Villermaux, E. (2005). Dynamic buckling and fragmentation in brittle rods. Physical Review Letters, 94, 035503.
Guinea, G., Rojo, F. J., & Elices, M.: Brittle failure of dry spaghetti. Engineering Failure Analysis, 11(5), 705-714.
Goldberg, N. N., & O'Reilly, O. M. (2020). Mechanics-based model for the cooking-induced deformation of spaghetti. Physical Review E, 101, 013001.
Hills, B. P., Babonneau, F., Quantin, V. M., Gaudet, F., & Belton, P. S. (1996). Radial NMR microimaging studies of the rehydration of extruded pasta. Journal of Food Engineering, 27(1), 71-86.
Horigane, A. K., Naito, S., Kurimoto, M., Irie, K., Yamada, M., Motoi, H., & Yoshida, M. (2006). Moisture distribution and diffusion in cooked spaghetti studied by NMR imaging and diffusion model. Cereal Chemistry, 83(3), 235-242.
imageJ. (2020). https://imagej.nih.gov/ij/
Joshi, D., Bhatnagar, M., & Shrivastava, R. (1969). A simple technique for the determination of Young's modulus. Journal of Physics E: Scientific Instruments, 2, 831.
Khairurrijal, W., E., Srigutomo, S., & Kurniasih, N. (2012). Measurement of gravitational acceleration using a computer microphone port. Physics Education, 47, 709.
Liu, H., Qi, J., & Hayakawa, K. (1997). Rheological properties including tensile fracture stress of semolina extrudates influenced by moisture content. Journal of Food Science, 62(4), 813-820.
Lotz, J. C., Gerhart, T. N., & Hayes, W. C. (1990). Mechanical properties of trabecular bone from the proximal femur: a quantitative CT study. Journal of Computer Assisted Tomography, 14(1), 107-114.
Margaretta, D. O., Amalia, N., Utami, F. D., Viridi, S., & Abdullah, M. (2019). Second-order phase transition and universality of self-buckled elastic slender columns. Journal of Taibah University of Science, 13(1), 1128-1136.
Novitskaya, E., Chen, P.-Y., Hamed, E., Jun, L., Lubarda, V. A., Jasiuk, I., & McKittrick, J. (2011). Recent advances on the measurement and calculation of the elastic moduli of cortical and trabecular bone: A review. Theoretical and Applied Mechanics, 38(3), 209-297.
Soh, H. N., Sissons, M. J., & Turner, M. A. (2006). Effect of starch granule size distribution and elevated amylose content on durum dough rheology and spaghetti cooking quality. Cereal Chemistry, 83(5), 513-519.
Vargas-Calderón, V., Guerrero-González, A. F., & Fajardo, F. (2019). Measurement of Young's modulus in noodles and bucatini. The Physics Educator, 1(2), 1950010.
Yu, L. J., & Ngadi, M. O. (2006). Rheological properties of instant fried noodle dough as affected by some ingredients. Journal of the Science of Food and Agriculture, 86(4), 544-548.
Zysset, P. K., Guo, X. E., Hoffler, C. E., Moore, K. E., & Goldstein, S. A. (1999). Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur. Journal of Biomechanics, 32(10), 1005-1012.