Invasive populations of Spiraea tomentosa (Rosaceae) are genetically diverse but decline during succession in forest habitats.

Amplified Fragment Length Polymorphism hybridization long-term study non-native plant polyploidy population genetics

Journal

Plant biology (Stuttgart, Germany)
ISSN: 1438-8677
Titre abrégé: Plant Biol (Stuttg)
Pays: England
ID NLM: 101148926

Informations de publication

Date de publication:
Sep 2021
Historique:
received: 26 03 2021
accepted: 11 04 2021
pubmed: 27 4 2021
medline: 1 9 2021
entrez: 26 4 2021
Statut: ppublish

Résumé

Population genetic and ecological data may help to control invasive plants, which are considered a major threat to natural habitats. In contrast to expected bottleneck events, genetic diversity of such invasive populations may be high due to extensive propagule pressure or admixture. The ecological impact of invasive species has been broadly evaluated in the field; however, long-term studies on the fate of invasive plants are scarce. We analysed genetic diversity and structure in invasive Spiraea tomentosa populations in eastern Germany and western Poland using Amplified Fragment Length Polymorphism. Potential hybridization between co-occurring diploid Sp. tomentosa and tetraploid Sp. douglasii was investigated using Flow Cytometry. The genetic analyses were complemented by data from a 13-year vegetation study in an area invaded by these Spiraea species. We found no evidence for hybridization between Spiraea species. In populations of Sp. tomentosa both genetic diversity (He = 0.26) and genetic structure (ΦPT = 0.27) were high and comparable to other outcrossing woody plants. Low levels of clonality, presence of seedlings and new patches in sites that had been colonized over the last 13 years imply that populations spread via sexual reproduction. In all habitat types, native species diversity declined following Sp. tomentosa invasion. However, detailed aerial mapping of a forest reserve with ongoing succession revealed that Spiraea spp. populations have declined over a 10-year period. Despite its potential for dispersal and negative effects on native plant communities, invasive Spiraea populations may be controlled by increasing canopy cover in forest habitats.

Identifiants

pubmed: 33899992
doi: 10.1111/plb.13275
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

749-759

Subventions

Organisme : ENEDAS
Organisme : Projekt DEAL
Organisme : Senckenberg Gesellschaft fur Naturforschung

Informations de copyright

© 2021 The Authors. Plant Biology published by John Wiley & Sons Ltd on behalf of German Society for Plant Sciences, Royal Botanical Society of the Netherlands.

Références

Abbott R.J. (1992) Plant invasions, interspecific hybridisation and the evolution of new plant taxa. Trends in Ecology & Evolution, 7, 401-405.
Adolphi K. (1995) Spiraea. In: Weber H.E. (Ed), Gustav Hegi: Illustrierte Flora von Mitteleuropa, vol IV/2A. Blackwell Verlag, Berlin, Germany, pp 250-265.
Ainouche M.L., Baumel A., Salmon A. (2004) Spartina anglica C.E. Hubbard: a natural model system for analysing early evolutionary changes that affect allopolyploid genomes. Biological Journal of the Linnean Society, 82, 475-484.
Arthofer W. (2010) TINYFLP and TINYCAT: software for automatic peak selection and scoring of AFLP data tables. Molecular Ecology Resources, 10, 385-388.
Balkenhol B., Haase H., Gebauer P., Lehmitz R. (2018) Steeplebushes conquer the countryside: influence of invasive plant species on spider communities (Araneae) in former wet meadows. Biodiversity and Conservation, 27, 2257-2274.
Barber E. (1911) Flora der Oberlausitz preußischen und sächsischen Anteils einschließlich des nördlichen Böhmens. III. Teil. Abhandlungen der Naturforschenden Gesellschaft zu Görlitz, 27, 239-412.
Braun-Blanquet J. (1964) Pflanzensociologie: Grundzüge der Vegetationskunde, 3rd edn. Springer, Wien, Austria.
Burkart B., Gärtner M., Konold W. (2003) Der Panzerschießplatz Dauban: einige Besonderheiten. Culterra, Schriftenreihe des Instituts für Landespflege der Albert-Ludwigs-Universität Freiburg, 31, 183-198.
Bzdega K., Janlak A., Kslazczyk T., Lewandowska A., Gancarek M., Sliwinska E., Tokarska-Guzik B. (2016) A survey of genetic variation and genome evolution within the invasive Fallopia complex. PLoS One, 11, e0161854.
Chytrý M., Maskell L.C., Pino J., Pyšek P., Vilá M., Font X., Smart S.M. (2008) Habitat invasions by alien plants: a quantitative comparison among Mediterranean, subcontinental and oceanic regions of Europe. Journal of Applied Ecology, 45, 448-458.
Clark L.V., Jaseniuk M. (2011) POLYSAT: an R package for polyploid microsatellite analysis. Molecular Ecology Resources, 11, 562-566.
Comai L. (2005) The advantages and disadvantages of being polyploid. Nature Reviews Genetics, 6, 836-846.
Crystal-Ornelas R., Lockwood J.L. (2020) The 'known unknowns' of invasive species impact measurement. Biological Invasions, 22, 1513-1525.
Cullen J. (2011) The European Garden Flora, 2nd edn, Vol 3. Cambridge University Press, Cambridge, UK.
Culmsee H., Wesche K. (2017) Das Biosphärenreservat Oberlausitzer Heide- und Teichlandschaft: Vielfalt in Biodiversität und Landnutzung.. Floristisch-Soziologische Arbeitsgemeinschaft e.V., 25-48.
Dajdok Z., Nowak A., Danielewicz W., Kujawa-Pawlaczyk J., Bena W. (2011) NOBANIS - Invasive alien species fact sheet − Spiraea tomentosa. Online database of the northern European and Baltic network on invasive alien species Nobanis. www.nobanis.org.
Dumolin S., Demesure B., Petit R.J. (1995) Inheritance of chloroplast and mitochondrial genomes in pedunculate oak investigated with an efficient PCR method. Theoretical and Applied Genetics, 91, 1253-1256.
Essl F. (2005) Spread and incipient naturalization of Spiraea japonica in Austria. Botanica Helvetica, 115, 1-14.
Estoup A., Ravigne V., Hufbauer R., Vitalis R., Gautier M., Facon B. (2016) Is there a genetic paradox of biological invasion? Annual Review of Ecology, Evolution, and Systematics, 47, 51-72.
Evanno G., Regnaut S., Goudet J. (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology, 14, 2611-2620.
Falush D., Stephens M., Pritchard J.K. (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Molecular Ecology Notes, 7, 574-578.
Feldhaus J.J., Copenheaver C.A., Barney J.N. (2013) Mapping and management of the non-native Japanese Spiraea at Buffalo Mountain Natural Area Preserve, Virginia, USA. Natural Areas Journal, 33, 435-439.
Gärtner M., Konold W. (2003) Untersuchungen zum Einfluss von Elchen auf die Vegetation der Feuchtgebiete des ehemaligen Panzerschießplatzes „Dauban“. Culterra, Schriftenreihe des Instituts für Landespflege der Albert-Ludwigs-Universität Freiburg, 31, 205-216.
Hardy O.J., Vekemans X. (2002) SPAGEDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Molecular Ecology Notes, 2, 618-620.
Heinrich R. (2014) Ermittlung der ökologischen Ansprüche für den Filzigen Spierstrauch - Spiraea tomentosa L. innerhalb des Verbreitungsgebietes Ostsachsen - Niederschlesien. Hochschule Zittau/Görlitz, Zittau, Germany.
Herben T., Suda J., Klimešová J. (2017) Polyploid species rely on vegetative reproduction more than diploids: a re-examination of the old hypothesis. Annals of Botany, 120, 341-349.
Herklotz V., Kovařík A., Lunerová L., Lippitsch S., Groth M., Ritz C.M. (2018) The fate of ribosomal RNA genes in spontaneous polyploid dogrose hybrids (Rosa L. sect. Caninae (DC.) Ser.) exhibiting non-symmetrical meiosis. The Plant Journal, 94, 77-90.
Herklotz V., Ritz C.M. (2017) Multiple and asymmetric origin of polyploid dogrose hybrids (Rosa L. sect. Caninae (DC.) Ser.) involving unreduced gametes. Annals of Botany, 120, 209-220.
Jäger E.J. (2017) Rothmaler Exkursionsflora von Deutschland. Springer Spektrum, Heidelberg, Germany.
Jesse L.C., Nason J.D., Obrycki J.J., Moloney K.A. (2010) Quantifying the levels of sexual reproduction and clonal spread in the invasive plant, Rosa multiflora. Biological Invasions, 12, 1847-1854.
Kampa E. (2000) Vegetationskundliche Untersuchungen auf dem ehemaligen Truppenübungsplatz Dauban (Oberlausitz). Berichte der Naturforschende Gesellschaft der Oberlausitz, 9, 97-108.
Kelager A., Pedersen J.S., Bruun H.H. (2013) Multiple introductions and no loss of genetic diversity: invasion history of Japanese Rose, Rosa rugosa, in Europe. Biological Invasions, 15, 1125-1141.
Kott S. (2006) Kartierung der Spiraea-Arten und Hybridkomplexe in der Kernzone “Daubaner Wald” des Biosphärenreservates “Oberlausitzer Heide- und Teichlandschaft” unter besonderer Berücksichtigung der Standortverhältnisse - sowie Untersuchungen zum Regenerations- und Reproduktionsverhalten. Diplomarbeit, Hochschule Zittau/Görlitz (FH), Germany.
Kott S. (2009) Neophytische Spiraea-Arten in der Kernzone "Daubaner Wald" des Biosphärenreservates "Oberalusitzer Heide- und Teichlandschaft". Berichte der Naturforschenden Gesellschaft der Oberlausitz, 17, 21-36.
Kuntze O. (1867) Taschenflora von Leipzig. Wintersche Verlagsbuchhandlung, Leipzig, Germany.
Kuznetsova A., Brockhoff P.B., Christensen R.H.B. (2017) lmerTest package: tests in linear mixed effects models. Journal of Statistical Software, 82, 1-26.
Leinemann L., Kleinschmit J., Fussi B., Hosius B., Kuchma O., Arenhovel W., Lemmen P., Katzel R., Rogge M., Finkeldey R. (2014) Genetic composition and differentiation of sloe (Prunus spinosa L.) populations in Germany with respect to the tracing of reproductive plant material. Plant Systematics and Evolution, 300, 2115-2125.
Lett I., Hensen I., Hirsch H., Renison D. (2015) No differences in genetic diversity of Cotoneaster franchetii (Rosaceae) shrubs between native and non-native ranges. Boletin De La Sociedad Argentina De Botanica, 50, 377-384.
Ley A.C., Hardy O.J. (2013) Improving AFLP analysis of large-scale patterns of genetic variation: a case study with the Central African lianas Haumania spp. (Marantaceae) showing interspecific gene flow. Molecular Ecology, 22, 1984-1997.
Lis R.A. (2015) Spiraea L. In: FNA Ed Committee (Ed), Flora of North America, Vol 9. Oxford University Press, New York, USA.
McCune B., Mefford M. (2016) PC-ORD. Multivariate analysis of ecological data. Vol 7.03. MjM Software, Gleneden Beach, OR, USA.
Mesgaran M.B., Lewis M.A., Ades P.K., Donohue K., Ohadi S., Li C.J., Cousens R.D. (2016) Hybridization can facilitate species invasions, even without enhancing local adaptation. Proceedings of the National Academy of Sciences of United States of America, 113, 10210-10214.
Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: Synthesis. Island Press, Washington, DC, USA.
Nybom H. (2004) Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Molecular Ecology, 13, 1143-1155.
Oksanen J., Blanchet F.G., Friendly M., Kindt R., Legendre P., McGlinn D., Minchin P.R., O'Hara R.B., Simpson G.L., Solymos P., Stevens H.H., Szoecs E., Wagner H. (2017) vegan. Community Ecology Package. https://cran.r-project.org/web/packages/vegan/index.html.
Pairon M., Petitpierre B., Campbell M., Guisan A., Broennimann O., Baret P.V., Jacquemart A.L., Besnard G. (2010) Multiple introductions boosted genetic diversity in the invasive range of black cherry (Prunus serotina; Rosaceae). Annals of Botany, 105, 881-890.
Pandit M.K., White S.M., Pocock M.J.O. (2014) The contrasting effects of genome size, chromosome number and ploidy level on plant invasiveness: a global analysis. New Phytologist, 203, 697-703.
Peakall R., Smouse P. (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes, 6, 288-295.
Podlaska M. (2014a) Probleme mit dem Filzigen Spierstrauch Spiraea tomentosa L. auf den Moorwiesen in der Nähe von Parowa. Peckiana, 9, 93-104.
Podlaska M. (2014b) Natural valorization of degraded swamp-originating meadows of Lower Silesia (extension of the Owit method). Steckiana, 18, 141-158.
Pritchard J.K., Stephens M., Donnelly P. (2000) Inference of population structure using multilocus genotype data. Genetics, 155, 945-959.
Pyšek P., Chytrý M., Pergl J., Sádlo J., Wild J. (2012) Plant invasions in the Czech Republic: current state, introduction dynamics, invasive species and invaded habitats. Preslia, 84, 575-629.
Pyšek P., Richardson D.M. (2010) Invasive species, environmental change and management, and health. Annual Review of Environment and Resources, 35, 25-55.
QGIS Development Team (2018) Quantum GIS (QGIS Geographic Information System). Open Source Geospatial Foundation Project. Available from http://download.osgeo.org/qgis/win64/.
Ren M.X., Zhang Q.G., Zhang D.Y. (2005) Random amplified polymorphic DNA markers reveal low genetic variation and a single dominant genotype in Eichhornia crassipes populations throughout China. Weed Research, 45, 236-244.
Rice A., Glick L., Abadi S., Einhorn M., Kopelman N.M., Salmen-Minikov A., Mayzel J., Chay O., Mayrose I. (2014) The Chromosome Counts Database (CCDB) - a community resource of plant chromosome numbers. New Phytologist, 206, 19-26.
Rosenberg N.A. (2004) DISTRUCT: a program for the graphical display of population structure. Molecular Ecology Notes, 4, 137-138.
Rusterholz H.P., Schneuwly J., Baur B. (2018) Invasion of the alien shrub Prunus laurocerasus in suburban deciduous forests: Effects on native vegetation and soil properties. Acta Oecologica, 92, 44-51.
Schmidt P.A., Schulz B. (2017) Fitschen Gehölzflora. Quelle & Meyer, Wiebelsheim, Germany.
Schuelke M. (2000) An economic method for the fluorescent labeling of PCR fragments. Nature Biotechnology, 18, 233-234.
Schulz D. (2013) Rote Liste und Artenliste Sachsens. Farn- und Samenpflanzen. Sächsisches Landesamt für Umwelt, Landwirtschaft und Geologie, Dresden, Germany.
Silverside A.J. (1998) Spiraea, taxa with elongated terminal panicle only. Plant Crib. Botanical Society of the British Isles in association with National Museums and Galleries of Wales, Durham, Cardiff, UK.
Stace C.A., Preston C.D., Pearman D.A. (2015) Hybrid Flora of the British Isles. Botanical Society of Britain and Ireland, Bristol, UK.
Stanton K.M., Mickelbart M.V. (2014a) Maintenance of water uptake and reduced water loss contribute to water stress tolerance of Spiraea alba Du Roi and Spiraea tomentosa L. Horticulture Research, 1, 14033.
Stanton K.M., Mickelbart M.V. (2014b) Growth and foliar nutrition of Spiraea alba Du Roi and Spiraea tomentosa L. in response to root zone pH. Scientia Horticulturae, 165, 23-28.
te Beest M., Le Roux J.J., Richardson D.M., Brysting A.K., Suda J., Kubešová M., Pyšek P. (2012) The more the better? The role of polyploidy in facilitating plant invasions. Annals of Botany, 109, 19-45.
Terho P. (2013) Flowing Software 2. Available from http://flowingsoftware.btk.fi/index.php?page=3.
Van der Mijnsbrugge M.K., Depypere L., Chaerle P., Goetghebeur P., Breyne P. (2013) Genetic and morphological variability among autochthonous Prunus spinosa populations in Flanders (northern part of Belgium): implications for seed sourcing. Plant Ecology and Evolution, 146, 193-202.
Vos P., Hogers R., Bleeker M., Reijans M., Van de Lee T., Hornes M., Fritjers A., Pot J., Peleman J., Kuiper M., Zabeau M. (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research, 23, 4407-4414.
Ward S.M., Gaskin J.F., Wilson L.M. (2008) Ecological genetics of plant invasion: what do we know? Invasive Plant Science and Management, 1, 98-109.
Weising K., Nybom H., Wolff K., Kahl G. (2005) DNA fingerprinting in plants - principles, methods and applications. Taylor & Francis, Abingdon, UK.
Wiatrowska B., Danielewicz W. (2016) Environmental determinants of the steeplebush (Spiraea tomentosa L.) invasion in the Bory Dolnoslaskie Forest. Sylwan, 160, 696-704.

Auteurs

J Lorenz (J)

Department of Botany, Senckenberg Museum of Natural History Görlitz, Görlitz, Germany.
Technical University Dresden, International Institute (IHI) Zittau, Chair of Biodiversity of Higher Plants, Zittau, Germany.

R Heinrich (R)

Department of Botany, Senckenberg Museum of Natural History Görlitz, Görlitz, Germany.
NABU - Naturschutzstation Ebersbach, Ebersbach-Neugersdorf, Germany.

A Schneider (A)

Department of Botany, Senckenberg Museum of Natural History Görlitz, Görlitz, Germany.

M Schwager (M)

Department of Botany, Senckenberg Museum of Natural History Görlitz, Görlitz, Germany.

V Herklotz (V)

Department of Botany, Senckenberg Museum of Natural History Görlitz, Görlitz, Germany.

K Wesche (K)

Department of Botany, Senckenberg Museum of Natural History Görlitz, Görlitz, Germany.
Technical University Dresden, International Institute (IHI) Zittau, Chair of Biodiversity of Higher Plants, Zittau, Germany.
German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Halle-Jena-Leipzig, Germany.

C M Ritz (CM)

Department of Botany, Senckenberg Museum of Natural History Görlitz, Görlitz, Germany.
Technical University Dresden, International Institute (IHI) Zittau, Chair of Biodiversity of Higher Plants, Zittau, Germany.

Articles similaires

Lakes Salinity Archaea Bacteria Microbiota
Eimeria tenella Animals Antigens, Protozoan Chickens Genetic Variation
Rivers Turkey Biodiversity Environmental Monitoring Animals
1.00
Iran Environmental Monitoring Seasons Ecosystem Forests

Classifications MeSH