Solution-State Preorganization of Cyclic β-Hairpin Ligands Determines Binding Mechanism and Affinities for MDM2.
Journal
Journal of chemical information and modeling
ISSN: 1549-960X
Titre abrégé: J Chem Inf Model
Pays: United States
ID NLM: 101230060
Informations de publication
Date de publication:
24 05 2021
24 05 2021
Historique:
pubmed:
28
4
2021
medline:
29
6
2021
entrez:
27
4
2021
Statut:
ppublish
Résumé
Understanding mechanisms of protein folding and binding is crucial to designing their molecular function. Molecular dynamics (MD) simulations and Markov state model (MSM) approaches provide a powerful way to understand complex conformational change that occurs over long time scales. Such dynamics are important for the design of therapeutic peptidomimetic ligands, whose affinity and binding mechanism are dictated by a combination of folding and binding. To examine the role of preorganization in peptide binding to protein targets, we performed massively parallel explicit-solvent MD simulations of cyclic β-hairpin ligands designed to mimic the p53 transactivation domain and competitively bind mouse double minute 2 homologue (MDM2). Disrupting the MDM2-p53 interaction is a therapeutic strategy to prevent degradation of the p53 tumor suppressor in cancer cells. MSM analysis of over 3 ms of aggregate trajectory data enabled us to build a detailed mechanistic model of coupled folding and binding of four cyclic peptides which we compare to experimental binding affinities and rates. The results show a striking relationship between the relative preorganization of each ligand in solution and its affinity for MDM2. Specifically, changes in peptide conformational populations predicted by the MSMs suggest that entropy loss upon binding is the main factor influencing affinity. The MSMs also enable detailed examination of non-native interactions which lead to misfolded states and comparison of structural ensembles with experimental NMR measurements. In contrast to an MSM study of p53 transactivation domain (TAD) binding to MDM2, MSMs of cyclic β-hairpin binding show a conformational selection mechanism. Finally, we make progress toward predicting accurate off rates of cyclic peptides using multiensemble Markov models (MEMMs) constructed from unbiased and biased simulated trajectories.
Identifiants
pubmed: 33905247
doi: 10.1021/acs.jcim.1c00029
pmc: PMC9960209
mid: NIHMS1869153
doi:
Substances chimiques
Ligands
0
Trp53 protein, mouse
0
Tumor Suppressor Protein p53
0
Mdm2 protein, mouse
EC 2.3.2.27
Proto-Oncogene Proteins c-mdm2
EC 2.3.2.27
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
2353-2367Subventions
Organisme : NIGMS NIH HHS
ID : R01 GM123296
Pays : United States
Organisme : NIH HHS
ID : S10 OD020095
Pays : United States
Références
Org Biomol Chem. 2016 Nov 8;14(44):10386-10393
pubmed: 27731454
J Biol Chem. 2018 Dec 21;293(51):19532-19543
pubmed: 30287685
J Med Chem. 2008 Mar 13;51(5):1469-73
pubmed: 18271516
Proc Natl Acad Sci U S A. 2009 Mar 24;106(12):4665-70
pubmed: 19255450
J Am Chem Soc. 2012 Jan 11;134(1):103-6
pubmed: 22148351
Nat Rev Drug Discov. 2006 Sep;5(9):730-9
pubmed: 16888652
J Phys Chem B. 2018 May 31;122(21):5649-5656
pubmed: 29522679
J Am Chem Soc. 2005 Sep 21;127(37):12838-46
pubmed: 16159277
J Comput Chem. 2004 Jul 15;25(9):1157-74
pubmed: 15116359
Science. 2000 Dec 8;290(5498):1903-4
pubmed: 17742054
J Comput Chem. 2014 Nov 15;35(30):2215-24
pubmed: 25250719
Proc Natl Acad Sci U S A. 2013 Sep 3;110(36):E3445-54
pubmed: 23946421
Chem Biol Drug Des. 2014 Jun;83(6):631-42
pubmed: 24418072
J Med Chem. 2019 Dec 26;62(24):11071-11079
pubmed: 31774287
J Chem Theory Comput. 2015 Jun 9;11(6):2801-12
pubmed: 26575573
Proc Natl Acad Sci U S A. 2008 Apr 15;105(15):5762-7
pubmed: 18391200
Chembiochem. 2006 Mar;7(3):515-26
pubmed: 16511824
Proc Natl Acad Sci U S A. 2012 Oct 30;109(44):17807-13
pubmed: 22778442
ChemMedChem. 2016 Apr 19;11(8):757-72
pubmed: 26676832
Science. 1996 Nov 8;274(5289):948-53
pubmed: 8875929
J Am Chem Soc. 2001 Sep 12;123(36):8667-77
pubmed: 11535071
Angew Chem Int Ed Engl. 2012 Aug 6;51(32):8110-3
pubmed: 22760863
Bioinformatics. 2013 Apr 1;29(7):845-54
pubmed: 23407358
J Chem Inf Model. 2015 Apr 27;55(4):806-13
pubmed: 25741627
J Chem Phys. 2015 Mar 28;142(12):124105
pubmed: 25833563
Sci Rep. 2013 Dec 13;3:3451
pubmed: 24336354
ACS Chem Biol. 2013 Mar 15;8(3):506-12
pubmed: 23214419
Chemistry. 2019 Nov 18;25(64):14572-14582
pubmed: 31599485
Drug Discov Today. 2012 Jan;17(1-2):10-22
pubmed: 21777691
Nat Rev Drug Discov. 2016 Feb;15(2):87-95
pubmed: 26678621
J Am Chem Soc. 2004 Aug 11;126(31):9468-9
pubmed: 15291512
J Med Chem. 2012 Jul 12;55(13):6237-41
pubmed: 22694121
Chem Rev. 2019 Sep 11;119(17):9861-9914
pubmed: 31046237
Chemistry. 2020 Apr 21;26(23):5231-5244
pubmed: 32027758
Cell. 1992 Jun 26;69(7):1237-45
pubmed: 1535557
Methods Mol Biol. 2021;2266:239-259
pubmed: 33759131
Org Biomol Chem. 2010 May 7;8(9):2103-16
pubmed: 20401387
FEBS Lett. 1997 Dec 22;420(1):25-7
pubmed: 9450543
J Chem Inf Model. 2017 Jul 24;57(7):1609-1620
pubmed: 28614661
Sci Rep. 2013;3:1639
pubmed: 23572190
Curr Opin Struct Biol. 2018 Apr;49:1-10
pubmed: 29132080
J Med Chem. 2016 Mar 24;59(6):2312-27
pubmed: 26457449
BMC Res Notes. 2012 Jul 23;5:367
pubmed: 22824207
J Comput Chem. 2002 Dec;23(16):1623-41
pubmed: 12395429
Bioorg Med Chem Lett. 2014 Jan 1;24(1):103-7
pubmed: 24342240
Cold Spring Harb Perspect Biol. 2010 Jun;2(6):a000919
pubmed: 20516128
J Chem Theory Comput. 2014 Apr 8;10(4):1739-52
pubmed: 26580382
Chem Rev. 2019 Sep 11;119(17):10241-10287
pubmed: 31083977
Angew Chem Int Ed Engl. 2010 May 10;49(21):3649-52
pubmed: 20449836
Proc Natl Acad Sci U S A. 1999 Mar 16;96(6):3077-80
pubmed: 10077639
J Bacteriol. 2012 Aug;194(16):4415-25
pubmed: 22707706
PLoS Comput Biol. 2011 May;7(5):e1002054
pubmed: 21637799
Biophys J. 2015 Oct 20;109(8):1528-32
pubmed: 26488642
Angew Chem Int Ed Engl. 2004 Apr 13;43(16):2109-12
pubmed: 15083458
J Am Chem Soc. 2018 Jan 17;140(2):618-628
pubmed: 29303257
Proc Natl Acad Sci U S A. 2009 Nov 10;106(45):19011-6
pubmed: 19887634
ACS Omega. 2019 Dec 16;4(26):22245-22250
pubmed: 31891108
Angew Chem Int Ed Engl. 2010 Sep 10;49(38):6778-80
pubmed: 20715028
Biophys J. 2017 Aug 22;113(4):785-793
pubmed: 28834715
Biophys J. 2017 Jan 10;112(1):10-15
pubmed: 28076801
Drug Discov Today. 2008 Nov;13(21-22):944-51
pubmed: 18725320
Acc Chem Res. 2008 Oct;41(10):1278-88
pubmed: 18412373
J Chem Inf Model. 2014 May 27;54(5):1425-32
pubmed: 24754484
Nature. 1997 May 15;387(6630):299-303
pubmed: 9153396
J Med Chem. 2014 Aug 14;57(15):6275-88
pubmed: 24601557
J Chem Theory Comput. 2013 Apr 9;9(4):2000-2009
pubmed: 23750122
J Phys Chem B. 2018 May 31;122(21):5610-5622
pubmed: 29518328
Proc Natl Acad Sci U S A. 2015 Feb 3;112(5):E386-91
pubmed: 25605901
Chem Biol. 2013 Jul 25;20(7):888-902
pubmed: 23890007
J Chem Theory Comput. 2020 Feb 11;16(2):1333-1348
pubmed: 31917926
Anticancer Agents Med Chem. 2010 Dec;10(10):753-68
pubmed: 21269250
Nat Chem Biol. 2014 Dec;10(12):1000-2
pubmed: 25362358
J Chem Theory Comput. 2019 Aug 13;15(8):4646-4659
pubmed: 31246463
J Med Chem. 2012 Jun 14;55(11):4936-54
pubmed: 22524527
J Chem Phys. 2009 May 28;130(20):205102
pubmed: 19485483
BMC Chem Biol. 2001;1(1):2
pubmed: 11710970
Curr Opin Chem Biol. 2017 Jun;38:80-86
pubmed: 28388463
J Phys Chem B. 2017 Nov 2;121(43):10046-10054
pubmed: 28992700
Nature. 1997 May 15;387(6630):296-9
pubmed: 9153395
ACS Omega. 2018 Sep 30;3(9):11742-11757
pubmed: 30320271
J Phys Chem B. 2019 Feb 28;123(8):1797-1807
pubmed: 30694671
J Chem Phys. 2013 Jul 7;139(1):015102
pubmed: 23822324
Nat Commun. 2017 Oct 23;8(1):1095
pubmed: 29062047
Proc Natl Acad Sci U S A. 2016 Jun 7;113(23):E3221-30
pubmed: 27226302
J Am Chem Soc. 2007 Mar 21;129(11):3127-34
pubmed: 17323946
J Chem Theory Comput. 2015 Nov 10;11(11):5525-42
pubmed: 26574340
Cancer Cell. 2010 Nov 16;18(5):411-22
pubmed: 21075307
Chem Rev. 2017 Jun 28;117(12):8094-8128
pubmed: 28541045