Expression map of entry receptors and infectivity factors for pan-coronaviruses in preimplantation and implantation stage human embryos.
Angiotensin-Converting Enzyme 2
/ genetics
Blastocyst
/ metabolism
Coronavirus
/ physiology
Coronavirus Infections
/ metabolism
Embryo Implantation
Embryo, Mammalian
/ metabolism
Endosomal Sorting Complexes Required for Transport
Humans
Serine Endopeptidases
/ genetics
Spike Glycoprotein, Coronavirus
/ genetics
Virus Replication
ACE2
COVID-19
Coronavirus
In vitro fertilization
Interaction
Replication
SARS-CoV-2
TMPRSS2
Virus
scRNAseq
Journal
Journal of assisted reproduction and genetics
ISSN: 1573-7330
Titre abrégé: J Assist Reprod Genet
Pays: Netherlands
ID NLM: 9206495
Informations de publication
Date de publication:
Jul 2021
Jul 2021
Historique:
received:
02
12
2020
accepted:
08
04
2021
pubmed:
30
4
2021
medline:
10
8
2021
entrez:
29
4
2021
Statut:
ppublish
Résumé
To predict if developing human embryos are permissive to multiple coronaviruses. We analyzed publicly available single-cell RNA-seq datasets of human embryos for the known canonical and non-canonical receptors and spike protein cleavage enzymes for multiple coronaviruses like SARS-CoV, SARS-CoV-2, MERS-CoV, hCoV-229E, and hCoV-NL63. We also analyzed the expression of host genes involved in viral replication, host proteins involved in viral endosomal sorting complexes required for transport (ESCRT), genes of host proteins that physically interact with proteins of SARS-CoV-2, and the host genes essential for coronavirus infectivity. Of the known receptors of SARS viruses, ACE2, BSG, GOLGA7, and ZDHHC5 were expressed in different proportions in the zygote, 4-cell, 8-cell, morula, and blastocysts including the trophectoderm. The MERS-CoV receptor, DPP4, and hCoV-229E receptor, ANPEP, were expressed mainly from the compact morula to the blastocyst stages. Transcripts of the MERS-CoV alternate receptor LGALS1 were detected in most cells at all stages of development. TMPRSS2 transcripts were detected in the epiblast, primitive endoderm, and trophectoderm, while transcripts of the endosomal proteases CTSL, CTSB, and FURIN were expressed in most cells at all stages of development. ACE2 and TMPRSS2 were co-expressed in a proportion of epiblast and trophectoderm cells. The embryonic cells expressed genes involved in ESCRT, viral replication, SARS-CoV-2 interactions, and coronavirus infectivity. The ACE2 and TMPRSS2 co-expressing cells were enriched in genes associated with lipid metabolism, lysosome, peroxisome, and oxidative phosphorylation pathways. Preimplantation and implantation stage human embryos could be permissive to multiple hCoVs.
Identifiants
pubmed: 33913101
doi: 10.1007/s10815-021-02192-3
pii: 10.1007/s10815-021-02192-3
pmc: PMC8081283
doi:
Substances chimiques
Endosomal Sorting Complexes Required for Transport
0
Spike Glycoprotein, Coronavirus
0
ACE2 protein, human
EC 3.4.17.23
Angiotensin-Converting Enzyme 2
EC 3.4.17.23
Serine Endopeptidases
EC 3.4.21.-
TMPRSS2 protein, human
EC 3.4.21.-
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1709-1720Informations de copyright
© 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Nat Struct Mol Biol. 2013 Sep;20(9):1131-9
pubmed: 23934149
Curr Top Microbiol Immunol. 2018;419:1-42
pubmed: 28643204
Science. 2020 Nov 13;370(6518):861-865
pubmed: 33082294
Engineering (Beijing). 2020 Oct;6(10):1162-1169
pubmed: 32837754
Sci Immunol. 2020 May 13;5(47):
pubmed: 32404436
J Clin Invest. 2020 Sep 1;130(9):4947-4953
pubmed: 32573498
J Assist Reprod Genet. 2021 Apr;38(4):779-781
pubmed: 33544317
Rev Med Virol. 2021 Sep;31(5):1-16
pubmed: 33387448
Nat Commun. 2020 Jul 14;11(1):3572
pubmed: 32665677
Cell Res. 2008 Feb;18(2):290-301
pubmed: 18227861
F S Sci. 2021 Feb;2(1):33-42
pubmed: 33521687
Front Cell Dev Biol. 2020 Aug 19;8:783
pubmed: 32974340
Cell. 2020 Apr 16;181(2):271-280.e8
pubmed: 32142651
Environ Chem Lett. 2021;19(3):1935-1944
pubmed: 33613145
Med. 2021 May 14;2(5):591-610.e10
pubmed: 33969332
Nat Commun. 2019 Sep 13;10(1):4155
pubmed: 31519912
FEMS Microbiol Rev. 2021 May 5;45(3):
pubmed: 33118022
Science. 2020 Nov 13;370(6518):856-860
pubmed: 33082293
Curr Drug Targets. 2021;22(2):192-201
pubmed: 32972339
Cell Rep. 2020 Oct 13;33(2):108254
pubmed: 33007239
Reprod Biomed Online. 2020 Sep;41(3):385-394
pubmed: 32693991
Front Immunol. 2019 Jul 03;10:1533
pubmed: 31333664
Curr Opin Microbiol. 2011 Aug;14(4):458-69
pubmed: 21824805
Int J Biol Macromol. 2019 Apr 15;127:1-11
pubmed: 30615963
J Assist Reprod Genet. 2020 Nov;37(11):2663-2668
pubmed: 32939662
Virus Res. 2015 Apr 16;202:120-34
pubmed: 25445340
Cell. 2016 May 5;165(4):1012-26
pubmed: 27062923
Open Biol. 2020 Aug;10(8):200162
pubmed: 32750256
Int J Mol Sci. 2021 Jan 20;22(3):
pubmed: 33498183
J Hum Reprod Sci. 2020 Oct-Dec;13(4):323-332
pubmed: 33627983
Viruses. 2019 Jan 16;11(1):
pubmed: 30654597
PLoS Pathog. 2020 Nov 2;16(11):e1009013
pubmed: 33137165
Signal Transduct Target Ther. 2021 Mar 27;6(1):134
pubmed: 33774649
Nat Rev Microbiol. 2019 Mar;17(3):181-192
pubmed: 30531947
Front Genet. 2021 Mar 16;12:599261
pubmed: 33796130
Development. 2018 Feb 7;145(3):
pubmed: 29361568
Front Immunol. 2020 Jun 26;11:1636
pubmed: 32670298
Am J Obstet Gynecol MFM. 2020 May;2(2):100107
pubmed: 32292902
Signal Transduct Target Ther. 2020 Dec 4;5(1):283
pubmed: 33277466
Biol Reprod. 2020 Apr 15;102(4):806-816
pubmed: 31901091
Int J Gynaecol Obstet. 2021 Feb;152(2):220-225
pubmed: 33259652
Eur J Obstet Gynecol Reprod Biol. 2021 Jan;256:503-505
pubmed: 33393481
Nature. 2020 Jul;583(7816):459-468
pubmed: 32353859
Development. 2015 Sep 15;142(18):3151-65
pubmed: 26293300
Placenta. 2021 Jan 1;103:141-151
pubmed: 33126048
J Assist Reprod Genet. 2020 Nov;37(11):2657-2660
pubmed: 32959144
Science. 2020 Dec 4;370(6521):
pubmed: 33060197
Hum Reprod. 2021 Mar 18;36(4):899-906
pubmed: 33346816