Echocardiographic diagnosis of atrial cardiomyopathy allows outcome prediction following pulmonary vein isolation.
Arrhythmia recurrence
Atrial cardiomyopathy
Atrial fibrillation
Atrial strain
Echocardiography
Pulmonary vein isolation
Journal
Clinical research in cardiology : official journal of the German Cardiac Society
ISSN: 1861-0692
Titre abrégé: Clin Res Cardiol
Pays: Germany
ID NLM: 101264123
Informations de publication
Date de publication:
Nov 2021
Nov 2021
Historique:
received:
25
01
2021
accepted:
25
03
2021
pubmed:
30
4
2021
medline:
19
2
2022
entrez:
29
4
2021
Statut:
ppublish
Résumé
Relevant atrial cardiomyopathy (ACM), defined as a left atrial (LA) low-voltage area ≥ 2 cm We prospectively enrolled 60 consecutive, ablation-naive patients (age 66 ± 9 years, 80% males) with persistent AF. In 30 patients (derivation cohort), LA-EF and LAS cut-off values for the presence of relevant ACM (high-density endocardial contact mapping in sinus rhythm prior to PVI at 3000 ± 1249 sites) were established in sinus rhythm and tested in a validation cohort (n = 30). Arrhythmia recurrence within 12 months was documented using 72-h Holter electrocardiograms. An LA-EF of < 34% predicted ACM with an area under the curve (AUC) of 0.846 (sensitivity 69.2%, specificity 76.5%) similar to a LASr < 23.5% (AUC 0.878, sensitivity 92.3%, specificity 82.4%). In the validation cohort, these cut-offs established the correct diagnosis of ACM in 76% of patients (positive predictive values 87%/93% and negative predictive values 73%/75%, respectively). Arrhythmia recurrence in the entire cohort was significantly more frequent in patients with LA-EF < 34% and LASr < 23.5% (56% vs. 29% and 55% vs. 26%, both p < 0.05). The echocardiographic parameters LA-EF and LAS allow accurate, non-invasive diagnosis of ACM and prediction of arrhythmia recurrence after PVI.
Sections du résumé
BACKGROUND
BACKGROUND
Relevant atrial cardiomyopathy (ACM), defined as a left atrial (LA) low-voltage area ≥ 2 cm
METHODS
METHODS
We prospectively enrolled 60 consecutive, ablation-naive patients (age 66 ± 9 years, 80% males) with persistent AF. In 30 patients (derivation cohort), LA-EF and LAS cut-off values for the presence of relevant ACM (high-density endocardial contact mapping in sinus rhythm prior to PVI at 3000 ± 1249 sites) were established in sinus rhythm and tested in a validation cohort (n = 30). Arrhythmia recurrence within 12 months was documented using 72-h Holter electrocardiograms.
RESULTS
RESULTS
An LA-EF of < 34% predicted ACM with an area under the curve (AUC) of 0.846 (sensitivity 69.2%, specificity 76.5%) similar to a LASr < 23.5% (AUC 0.878, sensitivity 92.3%, specificity 82.4%). In the validation cohort, these cut-offs established the correct diagnosis of ACM in 76% of patients (positive predictive values 87%/93% and negative predictive values 73%/75%, respectively). Arrhythmia recurrence in the entire cohort was significantly more frequent in patients with LA-EF < 34% and LASr < 23.5% (56% vs. 29% and 55% vs. 26%, both p < 0.05).
CONCLUSION
CONCLUSIONS
The echocardiographic parameters LA-EF and LAS allow accurate, non-invasive diagnosis of ACM and prediction of arrhythmia recurrence after PVI.
Identifiants
pubmed: 33914144
doi: 10.1007/s00392-021-01850-x
pii: 10.1007/s00392-021-01850-x
pmc: PMC8563528
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1770-1780Informations de copyright
© 2021. The Author(s).
Références
Europace. 2019 Oct 1;21(10):1484-1493
pubmed: 31280323
Eur J Echocardiogr. 2011 Jun;12(6):421-30
pubmed: 21565866
J Am Coll Cardiol. 2020 Sep 1;76(9):1051-1064
pubmed: 32854840
Echocardiography. 2018 Sep;35(9):1326-1334
pubmed: 29900593
Heart Rhythm. 2015 Mar;12(3):490-497
pubmed: 25485778
Medicine (Baltimore). 2016 Jul;95(30):e4333
pubmed: 27472715
Eur Heart J Cardiovasc Imaging. 2018 Jun 1;19(6):591-600
pubmed: 29596561
J Am Coll Cardiol. 2011 Sep 27;58(14):1474-81
pubmed: 21939832
JACC Cardiovasc Imaging. 2020 Oct;13(10):2071-2081
pubmed: 32682715
Eur Heart J Cardiovasc Imaging. 2015 Mar;16(3):233-70
pubmed: 25712077
Eur Heart J. 2020 Oct 14;41(39):3781-3782
pubmed: 32949462
JACC Clin Electrophysiol. 2018 Apr;4(4):531-543
pubmed: 30067494
Eur Heart J. 2013 Sep;34(35):2731-8
pubmed: 23761394
Eur Heart J. 2012 Apr;33(7):904-12
pubmed: 21990265
J Am Soc Echocardiogr. 2017 Jan;30(1):59-70.e8
pubmed: 28341032
Heart Rhythm. 2016 Feb;13(2):331-9
pubmed: 26484789
Europace. 2018 May 1;20(5):e60-e68
pubmed: 28651348
Circ Cardiovasc Imaging. 2010 May;3(3):231-9
pubmed: 20133512
J Am Coll Cardiol. 2011 Nov 15;58(21):2225-32
pubmed: 22078429
Circulation. 2020 Mar 3;141(9):e139-e596
pubmed: 31992061
Circulation. 2009 Apr 7;119(13):1758-67
pubmed: 19307477
JACC Cardiovasc Imaging. 2018 Oct;11(10):1405-1415
pubmed: 29153567
Eur Heart J Cardiovasc Imaging. 2015 Sep;16(9):1008-14
pubmed: 25750193
Clin Res Cardiol. 2020 Aug;109(8):978-987
pubmed: 31863175
Eur Heart J Cardiovasc Imaging. 2016 Dec;17(12):1321-1360
pubmed: 27422899
J Am Soc Echocardiogr. 2019 Oct;32(10):1268-1276.e3
pubmed: 31466848
Am J Cardiol. 2013 Feb 15;111(4):595-601
pubmed: 23211360
Heart Rhythm. 2015 Jan;12(1):11-8
pubmed: 25172009
JAMA. 2014 Feb 5;311(5):498-506
pubmed: 24496537
Int J Cardiol. 2015 Jan 20;179:351-7
pubmed: 25464485
J Am Coll Cardiol. 2005 Jan 18;45(2):285-92
pubmed: 15653029
Europace. 2018 Nov 1;20(FI_3):f359-f365
pubmed: 29016757
Circ J. 2010 Oct;74(10):2074-8
pubmed: 20668352
Int J Cardiovasc Imaging. 2019 Apr;35(4):603-613
pubmed: 30377893
Int J Cardiol. 2018 Dec 1;272:108-112
pubmed: 30017527
J Physiol. 2016 May 1;594(9):2387-98
pubmed: 26890861
Eur Heart J Cardiovasc Imaging. 2016 Jun;17(6):660-7
pubmed: 26219297
J Am Coll Cardiol. 2017 Sep 12;70(11):1311-1321
pubmed: 28882227
Circ Arrhythm Electrophysiol. 2016 Mar;9(3):
pubmed: 26966286