Interleukin-35 Is Involved in Angiogenesis/Bone Remodeling Coupling Through T Helper 17/Interleukin-17 Axis.
Animals
Apoptosis
Bone Remodeling
Bone Resorption
Bone and Bones
/ metabolism
Cell Survival
Interleukin-17
/ metabolism
Interleukins
/ metabolism
Macrophage Colony-Stimulating Factor
/ metabolism
Mice
Naphthoquinones
/ metabolism
Neovascularization, Physiologic
Osteoclasts
/ metabolism
Osteogenesis
Osteoporosis
/ metabolism
RANK Ligand
/ metabolism
RAW 264.7 Cells
Th17 Cells
/ cytology
angiogenesis
bone resorption
interleukin-35
osteoclasts
osteoporosis
Journal
Frontiers in endocrinology
ISSN: 1664-2392
Titre abrégé: Front Endocrinol (Lausanne)
Pays: Switzerland
ID NLM: 101555782
Informations de publication
Date de publication:
2021
2021
Historique:
received:
16
12
2020
accepted:
29
03
2021
entrez:
3
5
2021
pubmed:
4
5
2021
medline:
15
1
2022
Statut:
epublish
Résumé
Osteoporosis is a common metabolic bone disease mainly involving bone remodeling and blood vessels. The current study aimed to explore the suppressive role of interleukin (IL)-35 in nuclear factor kappa-B ligand receptor activator (RANKL) and macrophage colony stimulating factor (M-CSF)-induced osteoclastogenesis and angiogenesis in osteoclasts. Osteoclasts differentiation were induced by incubation of mouse leukemic monocyte/macrophage cell line RAW264.7 cells in the presence of RANKL and M-CSF and was assessed with tartrate-resistant acid phosphatase (TRAP) staining assay. The viability and apoptosis of RAW264.7 was measured using CCK-8 assay and flow cytometry, respectively. The expression of angiogenic genes and proteins were measured using RT-PCR, Western blots and ELISA. The inhibition of Th17/IL-17 axis was examined using plumbagin, which was demonstrated as an IL-17A related signaling pathway inhibitor. IL-35 inhibited the viability of RAW264.7 cells and promoted the apoptosis of RAW264.7 cells in a dose-dependent manner. Furthermore, IL-35 dose-dependently suppressed the expression of angiogenic markers including VEGF and its receptor. The suppressive effect of IL-35 was confirmed through the activation of Th17/IL-17 axis. We demonstrated for the first time the immuno-suppressive function of IL-35 on RANKL and M-CSF-induced osteoclastogenesis and angiogenesis through Th17/IL-17 axis. Therapeutic approach involving augmentation of IL-35 regulatory response may serve as a novel treatment option for osteoporosis, especially by suppressing bone resorption and angiogenesis.
Identifiants
pubmed: 33935967
doi: 10.3389/fendo.2021.642676
pmc: PMC8085552
doi:
Substances chimiques
Interleukin-17
0
Interleukins
0
Naphthoquinones
0
RANK Ligand
0
Tnfsf11 protein, mouse
0
interleukin-35, mouse
0
Macrophage Colony-Stimulating Factor
81627-83-0
plumbagin
YAS4TBQ4OQ
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
642676Informations de copyright
Copyright © 2021 Zhang, Li, Yuan, Yao, Yang, Xia, Shen and Lu.
Déclaration de conflit d'intérêts
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Références
Eur J Immunol. 2017 Jan;47(1):144-154
pubmed: 27859048
Bone. 2016 Oct;91:30-8
pubmed: 27353702
Biomed Res. 2009 Feb;30(1):31-7
pubmed: 19265261
Arthritis Rheum. 2010 Feb;62(2):402-13
pubmed: 20112358
J Biol Chem. 2008 May 9;283(19):13491-9
pubmed: 18359770
J Cell Sci. 2018 Jun 5;131(11):
pubmed: 29871956
Connect Tissue Res. 2018 Mar;59(2):99-107
pubmed: 28324674
Nat Rev Mol Cell Biol. 2011 Aug 23;12(9):551-64
pubmed: 21860391
J Biol Chem. 1996 Jul 26;271(30):17629-34
pubmed: 8663424
Nature. 2014 Mar 20;507(7492):366-370
pubmed: 24572363
Biochem Biophys Res Commun. 2004 Apr 2;316(2):573-9
pubmed: 15020256
PLoS One. 2011;6(10):e27006
pubmed: 22066025
Curr Opin Immunol. 2009 Dec;21(6):612-8
pubmed: 19854631
Proc Natl Acad Sci U S A. 1997 Oct 28;94(22):12041-6
pubmed: 9342359
Theranostics. 2020 Mar 4;10(9):3925-3938
pubmed: 32226529
Cancer Metastasis Rev. 2010 Sep;29(3):405-34
pubmed: 20737283
Injury. 2011 Jun;42(6):556-61
pubmed: 21489534
J Virol. 2020 Jun 16;94(13):
pubmed: 32321805
Development. 2011 Nov;138(21):4569-83
pubmed: 21965610
J Immunol. 2002 Nov 1;169(9):4732-8
pubmed: 12391181
Annu Rev Cell Dev Biol. 1995;11:73-91
pubmed: 8689573
Cell Physiol Biochem. 2016;40(5):1105-1116
pubmed: 27960151
Nature. 2003 May 15;423(6937):337-42
pubmed: 12748652
J Clin Periodontol. 2020 Jun;47(6):676-688
pubmed: 32160331
Clin Transl Sci. 2021 Jan;14(1):389-394
pubmed: 33048433
Eur J Immunol. 2007 Nov;37(11):3021-9
pubmed: 17874423
Nature. 2014 Mar 20;507(7492):323-328
pubmed: 24646994
Matrix Biol. 2008 Sep;27(7):589-99
pubmed: 18640270
J Clin Invest. 2017 Jun 30;127(7):2530-2532
pubmed: 28530641
Nature. 2007 Nov 22;450(7169):566-9
pubmed: 18033300
Front Bioeng Biotechnol. 2017 Nov 03;5:68
pubmed: 29164110
Mediators Inflamm. 2019 Aug 26;2019:9139145
pubmed: 31534439
Maturitas. 1996 May;23 Suppl:S65-9
pubmed: 8865143
J Immunol. 2001 Apr 15;166(8):4915-21
pubmed: 11290769
FEBS Lett. 2000 May 12;473(2):161-4
pubmed: 10812066