Miniaturized probe on polymer SU-8 with array of individually addressable microelectrodes for electrochemical analysis in neural and other biological tissues.
Animals
Calibration
Corpus Striatum
/ surgery
Dopamine
/ cerebrospinal fluid
Electrochemical Techniques
/ instrumentation
Electrolytes
/ chemistry
Ferricyanides
/ analysis
Gold
Lasers
Male
Microelectrodes
/ adverse effects
Microtechnology
Oxidation-Reduction
Polymers
/ chemistry
Potassium Chloride
/ chemistry
Rats, Sprague-Dawley
Dopamine
Electrochemical analysis
Generation-collection
Microfabrication
Redox cycling
SU-8 probe
Journal
Analytical and bioanalytical chemistry
ISSN: 1618-2650
Titre abrégé: Anal Bioanal Chem
Pays: Germany
ID NLM: 101134327
Informations de publication
Date de publication:
Nov 2021
Nov 2021
Historique:
received:
14
01
2021
accepted:
01
04
2021
revised:
15
03
2021
pubmed:
8
5
2021
medline:
29
1
2022
entrez:
7
5
2021
Statut:
ppublish
Résumé
An SU-8 probe with an array of nine, individually addressable gold microband electrodes (100 μm long, 4 μm wide, separated by 4-μm gaps) was photolithographically fabricated and characterized for detection of low concentrations of chemicals in confined spaces and in vivo studies of biological tissues. The probe's shank (6 mm long, 100 μm wide, 100 μm thick) is flexible, but exhibits sufficient sharpness and rigidity to be inserted into soft tissue. Laser micromachining was used to define probe geometry by spatially revealing the underlying sacrificial aluminum layer, which was then etched to free the probes from a silicon wafer. Perfusion with fluorescent nanobeads showed that, like a carbon fiber electrode, the probe produced no noticeable damage when inserted into rat brain, in contrast to damage from an inserted microdialysis probe. The individual addressability of the electrodes allows single and multiple electrode activation. Redox cycling is possible, where adjacent electrodes serve as generators (that oxidize or reduce molecules) and collectors (that do the opposite) to amplify signals of small concentrations without background subtraction. Information about electrochemical mechanisms and kinetics may also be obtained. Detection limits for potassium ferricyanide in potassium chloride electrolyte of 2.19, 1.25, and 2.08 μM and for dopamine in artificial cerebral spinal fluid of 1.94, 1.08, and 5.66 μM for generators alone and for generators and collectors during redox cycling, respectively, were obtained.
Identifiants
pubmed: 33961102
doi: 10.1007/s00216-021-03327-2
pii: 10.1007/s00216-021-03327-2
doi:
Substances chimiques
Electrolytes
0
Ferricyanides
0
Polymers
0
Potassium Chloride
660YQ98I10
Gold
7440-57-5
potassium ferricyanide
U4MAF9C813
Dopamine
VTD58H1Z2X
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
6777-6791Subventions
Organisme : Division of Chemistry
ID : CMI-1808286
Organisme : Centre for Doctoral Training in Diamond Science and Technology
ID : EP/ L015315/1
Organisme : NIH HHS
ID : R21NS109875
Pays : United States
Organisme : Royal Society for an Industry Fellowship
ID : J.V.M., INF/R1/180026
Organisme : University of Pittsburgh Center for Biological Imaging
ID : 1S10RR028478-01
Organisme : NIH HHS
ID : R21NS109875
Pays : United States
Informations de copyright
© 2021. Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Xu X, Zhang S, Chen H, Kong J. Integration of electrochemistry in micro-total analysis systems for biochemical assays: recent developments. Talanta. 2009;80(1):8–18. https://doi.org/10.1016/j.talanta.2009.06.039 .
doi: 10.1016/j.talanta.2009.06.039
pubmed: 19782186
Niwa O. Electroanalytical chemistry with carbon film electrodes and micro and nano-structured carbon film-based electrodes. Bull Chem Soc Jpn. 2005;78(4):555–71. https://doi.org/10.1246/bcsj.78.555 .
doi: 10.1246/bcsj.78.555
Lowinsohn D, Peres HEM, Kosminsky L, Paixão TRLC, Ferreira TL, Ramirez-Fernandez FJ, et al. Design and fabrication of a microelectrode array for iodate quantification in small sample volumes. Sensors Actuators B Chem. 2006;113(1):80–7. https://doi.org/10.1016/j.snb.2005.02.024 .
doi: 10.1016/j.snb.2005.02.024
Hu M, Fritsch I. Redox cycling behavior of individual and binary mixtures of catecholamines at gold microband electrode arrays. J Anal Chem. 2015;87(4):2029–32.
doi: 10.1021/ac5042022
Aggarwal A. Studies toward the development of a microelectrode array for detection of dopamine through redox cycling. Dissertation, University of Arkansas; 2011.
Niwa O. Electroanalysis with interdigitated array microelectrodes. Electroanalysis. 1995;7(7):606–13. https://doi.org/10.1002/elan.1140070702 .
doi: 10.1002/elan.1140070702
Bard AJ, Crayston JA, Kittlesen GP, Varco Shea T, Wrighton MS. Digital simulation of the measured electrochemical response of reversible redox couples at microelectrode arrays: consequences arising from closely spaced ultramicroelectrodes. Anal Chem. 1986;58(11):2321–31. https://doi.org/10.1021/ac00124a045 .
doi: 10.1021/ac00124a045
Oleinick A, Zhu F, Yan J, Mao B, Svir I, Amatore C. Theoretical investigation of generator-collector microwell arrays for improving electroanalytical selectivity: application to selective dopamine detection in the presence of ascorbic acid. Chem Phys Chem. 2013;14(9):1887–98. https://doi.org/10.1002/cphc.201300134 .
doi: 10.1002/cphc.201300134
pubmed: 23576475
Seymour JP, Wu F, Wise KD, Yoon E. State-of-the-art MEMS and microsystem tools for brain research. Microsyst Nanoeng. 2017;3(1):16066. https://doi.org/10.1038/micronano.2016.66 .
doi: 10.1038/micronano.2016.66
pubmed: 31057845
pmcid: 6445015
Jaquins-Gerstl A, Michael AC. Comparison of the brain penetration injury associated with microdialysis and voltammetry. J Neurosci Methods. 2009;183(2):127–35. https://doi.org/10.1016/j.jneumeth.2009.06.023 .
doi: 10.1016/j.jneumeth.2009.06.023
pubmed: 19559724
pmcid: 2743756
Hong G, Lieber CM. Novel electrode technologies for neural recordings. Nat Neurosci. 2019;20(6):330–45. https://doi.org/10.1038/s41583-019-0140-6 .
doi: 10.1038/s41583-019-0140-6
Dengler AK, McCarty GS. Microfabricated microelectrode sensor for measuring background and slowly changing dopamine concentrations. J Electroanal Chem. 2013;693:28–33. https://doi.org/10.1016/j.jelechem.2013.01.022 .
doi: 10.1016/j.jelechem.2013.01.022
Zachek MK, Park J, Takmakov P, Wightman RM, McCarty GS. Microfabricated FSCV-compatible microelectrode array for real-time monitoring of heterogeneous dopamine release. Analyst. 2010;135(7):1556–63. https://doi.org/10.1039/c0an00114g .
doi: 10.1039/c0an00114g
pubmed: 20464031
pmcid: 2975426
Roberts JG, Sombers LA. Fast-scan cyclic voltammetry: chemical sensing in the brain and beyond. Anal Chem. 2018;90(1):490–504. https://doi.org/10.1021/acs.analchem.7b04732 .
doi: 10.1021/acs.analchem.7b04732
pubmed: 29182309
Rodeberg NT, Sandberg SG, Johnson JA, Phillips PEM, Wightman RM. Hitchhiker’s guide to voltammetry: acute and chronic electrodes for in vivo fast-scan cyclic voltammetry. ACS Chem Neurosci. 2017;8(2):221–34. https://doi.org/10.1021/acschemneuro.6b00393 .
doi: 10.1021/acschemneuro.6b00393
pubmed: 28127962
Hunsberger HC, Setti SE, Heslin RT, Quintero JE, Gerhardt GA, Reed MN. Using enzyme-based biosensors to measure tonic and phasic glutamate in Alzheimer’s mouse models. JoVE. 2017;123:e55418.
Burmeister JJ, Pomerleau F, Huettl P, Gash CR, Werner CE, Bruno JP, et al. Ceramic-based multisite microelectrode arrays for simultaneous measures of choline and acetylcholine in CNS. Biosens Bioelectron. 2008;23(9):1382–9. https://doi.org/10.1016/j.bios.2007.12.013 .
doi: 10.1016/j.bios.2007.12.013
pubmed: 18243683
Burmeister JJ, Price DA, Pomerleau F, Huettl P, Quintero JE, Gerhardt GA. Challenges of simultaneous measurements of brain extracellular GABA and glutamate in vivo using enzyme-coated microelectrode arrays. 2020; (1872-678X (Electronic)).
Zachek MK, Takmakov P, Park J, Wightman RM, McCarty GS. Simultaneous monitoring of dopamine concentration at spatially different brain locations in vivo. Biosens Bioelectron. 2010;25(5):1179–85. https://doi.org/10.1016/j.bios.2009.10.008 .
doi: 10.1016/j.bios.2009.10.008
pubmed: 19896822
Ngernsutivorakul T, White TS, Kennedy RT. Microfabricated probes for studying brain chemistry. Chem Phys Chem. 2018;19(10):1128.
doi: 10.1002/cphc.201701180
Xi Y. Interdigitated array electrode microprobe: design, fabrication and characterization: University of Arkansas; 2005.
Cao Q, Puthongkham P, Venton BJ. Review: new insights into optimizing chemical and 3D surface structures of carbon electrodes for neurotransmitter detection. Anal Methods-UK. 2019;11(3):247–61. https://doi.org/10.1039/C8AY02472C .
doi: 10.1039/C8AY02472C
Atcherley CW, Laude ND, Parent KL, Heien ML. Fast-scan controlled-adsorption voltammetry for the quantification of absolute concentrations and adsorption dynamics. Langmuir. 2013;29(48):14885–92.
doi: 10.1021/la402686s
Taylor IM, Patel NA, Freedman NC, Castagnola E, Cui XT. Direct in vivo electrochemical detection of resting dopamine using poly (3, 4-ethylenedioxythiophene)/carbon nanotube functionalized microelectrodes. Anal Chem. 2019;91(20):12917–27.
doi: 10.1021/acs.analchem.9b02904
Pathirathna P, Balla RJ, Amemiya S. Nanogap-based electrochemical measurements at double-carbon-fiber ultramicroelectrodes. Anal Chem. 2018;90(20):11746–50. https://doi.org/10.1021/acs.analchem.8b02987 .
doi: 10.1021/acs.analchem.8b02987
pubmed: 30251536
pmcid: 6534271
Hu M, Fritsch I. Application of electrochemical redox cycling: toward differentiation of dopamine and norepinephrine. Anal Chem. 2016;88(11):5574–8.
doi: 10.1021/acs.analchem.6b00427
HajjHassan M, Chodavarapu V, Musallam S. NeuroMEMS: neural probe microtechnologies. Sensors. 2008;8(10):6704–26. https://doi.org/10.3390/s8106704 .
doi: 10.3390/s8106704
pubmed: 27873894
pmcid: 3707475
Sreenivas G, Ang SS, Fritsch I, Brown WD, Gerhardt GA, Woodward DJ. Fabrication and characterization of sputtered-carbon microelectrode arrays. Anal Chem. 1996;68(11):1858–64.
doi: 10.1021/ac9508816
Metallo C, White RD, Trimmer BA. Flexible parylene-based microelectrode arrays for high resolution EMG recordings in freely moving small animals. J Neurosci Methods. 2011;195(2):176–84.
doi: 10.1016/j.jneumeth.2010.12.005
Zhuolin Xiang S-CY, Xue N, Sun T. Ultra-thin flexible polyimide neural probe embedded in dissolvable maltose-coated microneedle. J Micromech Microeng. 2014;24:11–20.
Huang S-H, Lin S-P, Chen J-JJ. In vitro and in vivo characterization of SU-8 flexible neuroprobe: From mechanical properties to electrophysiological recording. Sensors Actuators A Phys. 2014;216:257–65. https://doi.org/10.1016/j.sna.2014.06.005 .
doi: 10.1016/j.sna.2014.06.005
Takeuchi S, Ziegler D, Yoshida Y, Mabuchi K, Suzuki T. Parylene flexible neural probes integrated with microfluidic channels. Lab Chip. 2005;5(5):519–23.
doi: 10.1039/b417497f
Keekeun Lee JH. Ryan Clement. Biocompatible benzyclobutene (BCB)-based neural implants with micro-fluidic channel. Biosens Bioelectron. 2004;20:404–7.
doi: 10.1016/j.bios.2004.02.005
A. H. A. Malavazi JABG, R. J. M. Covolan, R. R. Panepucci. Design and microfabrication methodology of Su-8 based neural probes XXIV Congresso Brasileiro de Engenharia Biomédica. 2014:2850–3.
Nemani KV, Moodie KL, Brennick JB, Su A, Gimi B. In vitro and in vivo evaluation of SU-8 biocompatibility. Mater Sci Eng. 2013;33(7):4453–9. https://doi.org/10.1016/j.msec.2013.07.001 .
doi: 10.1016/j.msec.2013.07.001
Read TL, Cobb SJ, Macpherson JV. An sp2 patterned boron doped diamond electrode for the simultaneous detection of dissolved oxygen and pH. Sensors. 2019;4(3):756–63. https://doi.org/10.1021/acssensors.9b00137 .
doi: 10.1021/acssensors.9b00137
Li A, Chan SH, Nguyen N-T. A laser-micromachined polymeric membraneless fuel cell. J Micromech Microeng. 2007;17(6):1107–13. https://doi.org/10.1088/0960-1317/17/6/002 .
doi: 10.1088/0960-1317/17/6/002
Ghantasala MK, Hayes JP, Harvey EC, Sood DK. Patterning, electroplating and removal of SU-8 moulds by excimer laser micromachining. J Micromech Microeng. 2001;11(2):133–9. https://doi.org/10.1088/0960-1317/11/2/308 .
doi: 10.1088/0960-1317/11/2/308
Green RA, Ordonez JS, Schuettler M, Poole-Warren LA, Lovell NH, Suaning GJ. Cytotoxicity of implantable microelectrode arrays produced by laser micromachining. Biomaterials. 2010;31(5):886–93. https://doi.org/10.1016/j.biomaterials.2009.09.099 .
doi: 10.1016/j.biomaterials.2009.09.099
pubmed: 19833388
Abercrombie ED, Keefe KA, DiFrischia DS, Zigmond MJ. Differential effect of stress on in vivo dopamine release in striatum, nucleus accumbens, and medial frontal cortex. J Neurochem. 1989;52(5):1655–8. https://doi.org/10.1111/j.1471-4159.1989.tb09224.x .
doi: 10.1111/j.1471-4159.1989.tb09224.x
pubmed: 2709017
Matarèse BFE, Feyen PLC, Falco A, Benfenati F, Lugli P, deMello JC. Use of SU8 as a stable and biocompatible adhesion layer for gold bioelectrodes. Sci Rep-UK. 2018;8(1):5560. https://doi.org/10.1038/s41598-018-21755-6 .
doi: 10.1038/s41598-018-21755-6
Nesbitt KM, Jaquins-Gerstl A, Skoda EM, Wipf P, Michael AC. Pharmacological mitigation of tissue damage during brain microdialysis. Anal Chem. 2013;85(17):8173–9. https://doi.org/10.1021/ac401201x .
doi: 10.1021/ac401201x
pubmed: 23927692
pmcid: 3799822
Hajj-Hassan M, Fayad R, Berro S, Chodavarapu VP, Musallam S. Implantation of elongated porous silicon neural probe array in rat cortex. Preprints. 2018.
Mitch Taylor I, Jaquins-Gerstl A, Sesack SR, Michael AC. Domain-dependent effects of DAT inhibition in the rat dorsal striatum. J Neurochem. 2012;122(2):283–94.
doi: 10.1111/j.1471-4159.2012.07774.x
Aggarwal A, Hu M, Fritsch I. Detection of dopamine in the presence of excess ascorbic acid at physiological concentrations through redox cycling at an unmodified microelectrode array. Anal Bioanal Chem. 2013;405. https://doi.org/10.1007/s00216-013-6738-z .
Venton BJ, Cao Q. Fundamentals of fast-scan cyclic voltammetry for dopamine detection. Analyst. 2020;145(4):1158–68. https://doi.org/10.1039/C9AN01586H .
doi: 10.1039/C9AN01586H
pubmed: 31922176
pmcid: 7028514
Bard AJ, Faulkner LR. Electrochemical methods: fundamentals and applications. 2nd ed. New York: Wiley; 2001.
Konopka SJ, McDuffie B. Diffusion coefficients of ferri- and ferrocyanide ions in aqueous media, using twin-electrode thin-layer electrochemistry. Anal Chem. 1970;42(14):1741–6. https://doi.org/10.1021/ac50160a042 .
doi: 10.1021/ac50160a042
Le Drogoff B, El Khakani MA, Silva PRM, Chaker M, Vijh AK. Effect of the microelectrode geometry on the diffusion behavior and the electroanalytical performance of hg-electroplated iridium microelectrode arrays intended for the detection of heavy metal traces. Electroanal. 2001;13(18):1491–6. https://doi.org/10.1002/1521-4109(200112)13:18<1491::AID-ELAN1491>3.0.CO;2-Z .
doi: 10.1002/1521-4109(200112)13:18<1491::AID-ELAN1491>3.0.CO;2-Z
Aoki K, Morita M, Niwa O, Tabei H. Quantitative analysis of reversible diffusion-controlled currents of redox soluble species at interdigitated array electrodes under steady-state conditions. J Electroanal Chem. 1988;256(2):269–82.
doi: 10.1016/0022-0728(88)87003-7
Niwa O, Morita M, Tabei H. Fabrication and characteristics of vertically separated interdigitated array electrodes. J Electroanal Chem. 1989;267(1):291–7. https://doi.org/10.1016/0022-0728(89)80257-8 .
doi: 10.1016/0022-0728(89)80257-8
Han D, Zaino Iii LP, Fu K, Bohn PW. Redox cycling in nanopore-confined recessed dual-ring electrode arrays. J Phys Chem C. 2016;120(37):20634–41.
doi: 10.1021/acs.jpcc.6b01287
Niwa O, Morita M, Tabei H. Highly sensitive and selective voltammetric detection of dopamine with vertically separated interdigitated array electrodes. Electroanalysis. 1991;3(3):163–8. https://doi.org/10.1002/elan.1140030305 .
doi: 10.1002/elan.1140030305
Rice ME, Gerhardt GA, Hierl PM, Nagy G, Adams RN. Diffusion coefficients of neurotransmitters and their metabolites in brain extracellular fluid space. Neuroscience. 1985;15(3):891–902. https://doi.org/10.1016/0306-4522(85)90087-9 .
doi: 10.1016/0306-4522(85)90087-9
pubmed: 2866468
Wouters K, Puers R. Diffusing and swelling in SU-8: insight in material properties and processing. J Micromech Microeng. 2010;20(9):095013. https://doi.org/10.1088/0960-1317/20/9/095013 .
doi: 10.1088/0960-1317/20/9/095013
Gu H, Varner EL, Groskreutz SR, Michael AC, Weber SG. In vivo monitoring of dopamine by microdialysis with 1 min temporal resolution using online capillary liquid chromatography with electrochemical detection. Anal Chem. 2015;87(12):6088–94.
doi: 10.1021/acs.analchem.5b00633
Yang H, Thompson AB, McIntosh BJ, Altieri SC, Andrews AM. Physiologically relevant changes in serotonin resolved by fast microdialysis. ACS Chem Neurosci. 2013;4(5):790–8.
doi: 10.1021/cn400072f
Robbins EM, Jaquins-Gerstl A, Fine DF, Leong CL, Dixon CE, Wagner AK, et al. Extended (10-day) real-time monitoring by dexamethasone-enhanced microdialysis in the injured rat cortex. ACS Chem Neurosci. 2019;10(8):3521–31. https://doi.org/10.1021/acschemneuro.9b00145 .
doi: 10.1021/acschemneuro.9b00145
pubmed: 31246409
Roberts JG, Lugo-Morales LZ, Loziuk PL, Sombers LA. Real-time chemical measurements of dopamine release in the brain. Methods Mol Biol. 2013;964:275–94. https://doi.org/10.1007/978-1-62703-251-3_16 .
doi: 10.1007/978-1-62703-251-3_16
pubmed: 23296789
pmcid: 5259961