Temporal control of muscle synergies is linked with alpha-band neural drive.


Journal

The Journal of physiology
ISSN: 1469-7793
Titre abrégé: J Physiol
Pays: England
ID NLM: 0266262

Informations de publication

Date de publication:
07 2021
Historique:
received: 10 12 2020
accepted: 21 04 2021
pubmed: 9 5 2021
medline: 11 8 2021
entrez: 8 5 2021
Statut: ppublish

Résumé

It is theorized that the nervous system controls groups of muscles together as functional units, or 'synergies', resulting in correlated electromyographic (EMG) signals among muscles. However, such correlation does not necessarily imply group-level neural control. Oscillatory synchronization (coherence) among EMG signals implies neural coupling, but it is not clear how this relates to control of muscle synergies. EMG was recorded from seven arm muscles of 10 adult participants rotating an upper limb ergometer, and EMG-EMG coherence, EMG amplitude correlations and their relationship with each other were characterized. A novel method to derive multi-muscle synergies from EMG-EMG coherence is presented and these are compared with classically defined synergies. Coherent alpha-band (8-16 Hz) drive was strongest among muscles whose gross activity levels are well correlated within a given task. The cross-muscle distribution and temporal modulation of coherent alpha-band drive suggests a possible role in the neural coordination/monitoring of synergies. During movement, groups of muscles may be controlled together by the nervous system as an adaptable functional entity, or 'synergy'. The rules governing when (or if) this occurs during voluntary behaviour in humans are not well understood, at least in part because synergies are usually defined by correlated patterns of muscle activity without regard for the underlying structure of their neural control. In this study, we investigated the extent to which comodulation of muscle output (i.e. correlation of electromyographic (EMG) amplitudes) implies that muscles share intermuscular neural input (assessed via EMG-EMG coherence analysis). We first examined this relationship among pairs of upper limb muscles engaged in an arm cycling task. We then applied a novel multidimensional EMG-EMG coherence analysis allowing synergies to be characterized on the basis of shared neural drive. We found that alpha-band coherence (8-16 Hz) is related to the degree to which overall muscle activity levels correlate over time. The extension of this coherence analysis to describe the cross-muscle distribution and temporal modulation of alpha-band drive revealed a close match to the temporal and structural features of traditionally defined muscle synergies. Interestingly, the coherence-derived neural drive was inversely associated with, and preceded, changes in EMG amplitudes by ∼200 ms. Our novel characterization of how alpha-band neural drive is dynamically distributed among muscles is a fundamental step forward in understanding the neural origins and correlates of muscle synergies.

Identifiants

pubmed: 33963545
doi: 10.1113/JP281232
pmc: PMC9009735
mid: NIHMS1703509
doi:

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, U.S. Gov't, Non-P.H.S.

Langues

eng

Sous-ensembles de citation

IM

Pagination

3385-3402

Subventions

Organisme : NIAMS NIH HHS
ID : R01 AR050520
Pays : United States
Organisme : NIAMS NIH HHS
ID : R01 AR052345
Pays : United States
Organisme : NINDS NIH HHS
ID : R21 NS113613
Pays : United States

Informations de copyright

© 2021 The Authors. The Journal of Physiology © 2021 The Physiological Society.

Références

J Neurosci. 2000 Mar 15;20(6):2307-14
pubmed: 10704506
Motor Control. 2007 Jul;11(3):276-308
pubmed: 17715460
Front Neurol. 2020 Apr 03;11:204
pubmed: 32308641
Front Comput Neurosci. 2013 Apr 19;7:43
pubmed: 23626535
J Neurophysiol. 1978 May;41(3):557-71
pubmed: 660226
Proc Natl Acad Sci U S A. 2002 Feb 19;99(4):2299-302
pubmed: 11854526
J Neurosci. 2017 Oct 4;37(40):9778-9784
pubmed: 28871033
J Electromyogr Kinesiol. 2004 Jun;14(3):389-99
pubmed: 15094152
Proc Natl Acad Sci U S A. 2010 Jun 15;107(24):11098-103
pubmed: 20534484
Neuroscience. 2007 Jun 15;147(1):224-35
pubmed: 17499933
Clin Neurophysiol. 2017 Jul;128(7):1308-1314
pubmed: 28558314
J Neurosci. 2013 Apr 10;33(15):6552-6
pubmed: 23575852
J Neurophysiol. 2016 Dec 1;116(6):2576-2585
pubmed: 27628205
Nat Neurosci. 2014 Apr;17(4):586-93
pubmed: 24609464
Curr Opin Neurobiol. 2009 Dec;19(6):601-7
pubmed: 19828310
J Neurosci. 2015 Sep 02;35(35):12207-16
pubmed: 26338331
J Physiol. 2018 Apr 1;596(7):1211-1225
pubmed: 29457651
Neuroimage Clin. 2018 Apr 04;19:147-159
pubmed: 30035012
Front Neurosci. 2018 Aug 07;12:537
pubmed: 30131672
J Anat. 2019 Jan;234(1):1-15
pubmed: 30411350
J Phys Ther Sci. 2017 Jul;29(7):1242-1246
pubmed: 28744056
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:5808-11
pubmed: 25571316
Front Hum Neurosci. 2013 Dec 10;7:855
pubmed: 24339813
Cerebellum. 2012 Jun;11(2):457-87
pubmed: 22161499
J Electromyogr Kinesiol. 2000 Oct;10(5):361-74
pubmed: 11018445
Sci Adv. 2018 Jun 27;4(6):eaat0497
pubmed: 29963631
J Neurophysiol. 2011 Jul;106(1):202-10
pubmed: 21511705
Front Neurol. 2018 Oct 09;9:795
pubmed: 30356703
Crit Rev Biomed Eng. 1989;17(4):359-411
pubmed: 2676342
J Physiol. 1970 Feb;206(2):359-82
pubmed: 5532249
J Neurophysiol. 2008 Feb;99(2):473-83
pubmed: 18057114
Front Bioeng Biotechnol. 2020 Jul 15;8:800
pubmed: 32760711
Sensors (Basel). 2020 Jun 05;20(11):
pubmed: 32517013
Parkinsonism Relat Disord. 2015 Apr;21(4):383-8
pubmed: 25703340
Proc Natl Acad Sci U S A. 2009 Nov 17;106(46):19563-8
pubmed: 19880747
J Neurophysiol. 2003 Apr;89(4):1941-53
pubmed: 12686573
Parkinsonism Relat Disord. 2018 Jan;46 Suppl 1:S70-S74
pubmed: 28747278
J Neurophysiol. 1985 Nov;54(5):1228-70
pubmed: 2934519
J Neurophysiol. 2012 Feb;107(3):796-807
pubmed: 22072508
Brain. 2018 Jun 1;141(6):1770-1781
pubmed: 29701820
Cell Rep. 2019 May 28;27(9):2608-2619.e4
pubmed: 31141686
J Neurosci. 2016 May 11;36(19):5362-72
pubmed: 27170132
PLoS Comput Biol. 2012;8(5):e1002434
pubmed: 22570602
J Neurosci. 1996 Jul 1;16(13):4240-9
pubmed: 8753885
Cell Rep. 2018 May 1;23(5):1275-1285
pubmed: 29719244
Brain. 2017 Mar 1;140(3):721-734
pubmed: 28073788
J Physiol. 2019 Dec;597(24):5935-5948
pubmed: 31605381
J Physiol. 1998 May 15;509 ( Pt 1):3-14
pubmed: 9547376
Clin Neurophysiol. 2002 Oct;113(10):1523-31
pubmed: 12350427
Front Neurol. 2017 Jun 13;8:257
pubmed: 28659855
Cerebellum. 2016 Jun;15(3):369-91
pubmed: 26105056
J Neurophysiol. 2003 Sep;90(3):1654-61
pubmed: 12750424
J Neurosci. 2010 Jan 27;30(4):1322-36
pubmed: 20107059
J Neurosci. 2007 Jun 6;27(23):6291-301
pubmed: 17554003
Curr Opin Neurol. 2020 Aug;33(4):474-481
pubmed: 32657888
Front Comput Neurosci. 2018 Sep 11;12:62
pubmed: 30254579
Front Neurol. 2019 May 10;10:468
pubmed: 31133971
J Neuroeng Rehabil. 2016 Oct 11;13(1):92
pubmed: 27724916
Phys Life Rev. 2016 Jul;17:54-60
pubmed: 27344306
Sci Rep. 2015 Dec 04;5:17830
pubmed: 26634293
Tremor Other Hyperkinet Mov (N Y). 2012;2:
pubmed: 23439925
Exp Brain Res. 2008 Mar;185(3):509-19
pubmed: 17989973
Front Comput Neurosci. 2017 Apr 04;11:17
pubmed: 28420975
Brain. 1995 Apr;118 ( Pt 2):495-510
pubmed: 7735890
J Neurophysiol. 2006 Jan;95(1):53-66
pubmed: 16162838
Schizophr Bull. 2008 Sep;34(5):907-26
pubmed: 18684772
Exp Brain Res. 2015 Jun;233(6):1907-19
pubmed: 25821181
J Neurophysiol. 2017 Sep 1;118(3):1775-1783
pubmed: 28659460
Brain. 2016 Mar;139(Pt 3):845-55
pubmed: 26794597
Proc Natl Acad Sci U S A. 2020 Apr 7;117(14):8135-8142
pubmed: 32205442
Front Bioeng Biotechnol. 2017 Jun 30;5:39
pubmed: 28713811
Hum Brain Mapp. 1999;8(4):194-208
pubmed: 10619414
Front Comput Neurosci. 2013 Apr 29;7:51
pubmed: 23641212
J Neurosci. 2012 Sep 5;32(36):12349-60
pubmed: 22956825
Rev Neurol (Paris). 1993;149(11):607-28
pubmed: 8091076
Appl Bionics Biomech. 2018 Apr 22;2018:3615368
pubmed: 29849756
Clin Neurophysiol. 2019 Feb;130(2):259-269
pubmed: 30583273
Front Physiol. 2020 Jul 24;11:751
pubmed: 32792967
J Strength Cond Res. 2016 Jul;30(7):1948-59
pubmed: 26645673
Proc Natl Acad Sci U S A. 2012 Sep 4;109(36):14652-6
pubmed: 22908288
Front Neurol. 2017 May 15;8:202
pubmed: 28555126
Exp Brain Res. 2010 Apr;202(1):89-99
pubmed: 20012600
J Neuroeng Rehabil. 2004 Oct 14;1(1):2
pubmed: 15679910
Sci Rep. 2018 Aug 23;8(1):12657
pubmed: 30140072
Neuroimage. 2019 Nov 15;202:116093
pubmed: 31404629
J Neurophysiol. 2006 Feb;95(2):1194-206
pubmed: 16424458

Auteurs

Christopher M Laine (CM)

Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, USA.

Brian A Cohn (BA)

Department of Computer Science, University of Southern California, Los Angeles, CA, USA.

Francisco J Valero-Cuevas (FJ)

Department of Computer Science, University of Southern California, Los Angeles, CA, USA.
Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA.
Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, USA.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH