Levels and Characteristics of mRNAs in Spores of Firmicute Species.
Bacillus subtilis
Bacillus thuringiensis
Clostridioides
Geobacillus
mRNA
spores
Journal
Journal of bacteriology
ISSN: 1098-5530
Titre abrégé: J Bacteriol
Pays: United States
ID NLM: 2985120R
Informations de publication
Date de publication:
22 06 2021
22 06 2021
Historique:
pubmed:
12
5
2021
medline:
26
8
2021
entrez:
11
5
2021
Statut:
ppublish
Résumé
Spores of firmicute species contain 100s of mRNAs, whose major function in Bacillus subtilis is to provide ribonucleotides for new RNA synthesis when spores germinate. To determine if this is a general phenomenon, RNA was isolated from spores of multiple firmicute species and relative mRNA levels determined by transcriptome sequencing (RNA-seq). Determination of RNA levels in single spores allowed calculation of RNA nucleotides/spore, and assuming mRNA is 3% of spore RNA indicated that only ∼6% of spore mRNAs were present at >1/spore. Bacillus subtilis, Bacillus atrophaeus, and Clostridioides difficile spores had 49, 42, and 51 mRNAs at >1/spore, and numbers of mRNAs at ≥1/spore were ∼10 to 50% higher in Geobacillus stearothermophilus and Bacillus thuringiensis Al Hakam spores and ∼4-fold higher in Bacillus megaterium spores. In all species, some to many abundant spore mRNAs (i) were transcribed by RNA polymerase with forespore-specific σ factors, (ii) encoded proteins that were homologs of those encoded by abundant B. subtilis spore mRNAs and are proteins in dormant spores, and (iii) were likely transcribed in the mother cell compartment of the sporulating cell. Analysis of the coverage of RNA-seq reads on mRNAs from all species suggested that abundant spore mRNAs were fragmented, as was confirmed by reverse transcriptase quantitative PCR (RT-qPCR) analysis of abundant B. subtilis and C. difficile spore mRNAs. These data add to evidence indicating that the function of at least the great majority of mRNAs in all firmicute spores is to be degraded to generate ribonucleotides for new RNA synthesis when spores germinate.
Identifiants
pubmed: 33972352
pii: JB.00017-21
doi: 10.1128/JB.00017-21
pmc: PMC8315741
doi:
Substances chimiques
Bacterial Proteins
0
RNA, Bacterial
0
RNA, Messenger
0
DNA-Directed RNA Polymerases
EC 2.7.7.6
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e0001721Subventions
Organisme : NIAID NIH HHS
ID : R01 AI029735
Pays : United States
Organisme : NIAID NIH HHS
ID : R21 AI128379
Pays : United States
Références
Sci Rep. 2017 Aug 10;7(1):7725
pubmed: 28798363
Proteomics Clin Appl. 2018 Sep;12(5):e1700169
pubmed: 29484825
J Bacteriol. 2019 Apr 9;201(9):
pubmed: 30782632
J Bacteriol. 2006 Sep;188(17):6092-100
pubmed: 16923876
Front Microbiol. 2020 Oct 26;11:596092
pubmed: 33193276
J Bacteriol. 2016 Nov 18;198(24):3254-3264
pubmed: 27645383
J Appl Microbiol. 2016 Nov;121(5):1300-1311
pubmed: 27538778
Int J Syst Evol Microbiol. 2010 Oct;60(Pt 10):2490-2495
pubmed: 19966000
Nucleic Acids Res. 2009 Jul;37(Web Server issue):W202-8
pubmed: 19458158
Mol Syst Biol. 2015 Nov 17;11(11):839
pubmed: 26577401
J Mol Biol. 2006 Apr 21;358(1):16-37
pubmed: 16497325
Astrobiology. 2012 May;12(5):469-86
pubmed: 22680693
mSphere. 2020 Aug 5;5(4):
pubmed: 32759332
J Bacteriol. 2019 Jun 21;201(14):
pubmed: 31061168
J Bacteriol. 2004 Jan;186(1):164-78
pubmed: 14679236
Mol Microbiol. 2008 Jul;69(2):402-17
pubmed: 18485064
Cell. 2012 Jan 20;148(1-2):139-49
pubmed: 22209493
Bioinformatics. 2011 Apr 1;27(7):1017-8
pubmed: 21330290
Nucleic Acids Res. 2002 Jan 1;30(1):207-10
pubmed: 11752295
J Bacteriol. 2011 Apr;193(8):1884-92
pubmed: 21317325
J Appl Microbiol. 2014 Apr;116(4):805-14
pubmed: 24344920
Nucleic Acids Res. 2018 Jan 4;46(D1):D743-D748
pubmed: 29788229
J Bacteriol. 1989 May;171(5):2708-18
pubmed: 2468649
Mol Microbiol. 2018 Apr;108(1):45-62
pubmed: 29363854
Crit Rev Biochem Mol Biol. 2019 Jun;54(3):242-300
pubmed: 31464530
Genes Dev. 2009 Apr 15;23(8):1014-24
pubmed: 19390092
Food Microbiol. 2011 Apr;28(2):275-83
pubmed: 21315984
J Biol Chem. 1970 Jul 25;245(14):3645-52
pubmed: 4990475
Proc Natl Acad Sci U S A. 2008 Sep 30;105(39):15100-5
pubmed: 18812514
J Bacteriol. 1992 May;174(9):2943-50
pubmed: 1314805
J Biol Chem. 1970 Mar 10;245(5):1137-45
pubmed: 4984699
Nat Biotechnol. 2006 Dec;24(12):1573-80
pubmed: 17115055
J Appl Microbiol. 2006 Sep;101(3):514-25
pubmed: 16907802
J Bacteriol. 2007 May;189(9):3624-34
pubmed: 17322312
J Bacteriol. 1977 Jun;130(3):1130-8
pubmed: 193830
Food Microbiol. 2016 May;55:73-85
pubmed: 26742618
J Bacteriol. 1996 Jun;178(12):3486-95
pubmed: 8655545
J Bacteriol. 2000 Oct;182(19):5505-12
pubmed: 10986255
PLoS One. 2013 May 15;8(5):e64011
pubmed: 23691138
Trends Microbiol. 2014 Jul;22(7):406-16
pubmed: 24814671
FEMS Microbiol Lett. 2014 Sep;358(2):129-36
pubmed: 25105965
Food Microbiol. 2013 Feb;33(1):11-23
pubmed: 23122496
PLoS Genet. 2013;9(8):e1003660
pubmed: 23950727
J Bacteriol. 1998 Dec;180(24):6704-12
pubmed: 9852018
J Appl Microbiol. 2019 Feb;126(2):348-358
pubmed: 30106202
Biochem J. 1969 Nov;115(2):171-81
pubmed: 4985117
J Bacteriol. 2015 Jul;197(14):2361-73
pubmed: 25939833
Microbiol Spectr. 2016 Apr;4(2):
pubmed: 27227299
Microbiology (Reading). 1994 Oct;140 ( Pt 10):2513-29
pubmed: 8000524
Front Microbiol. 2016 Oct 06;7:1564
pubmed: 27766092
J Bacteriol. 2001 Apr;183(8):2662-6
pubmed: 11274127
J Bacteriol. 1974 Aug;119(2):514-21
pubmed: 4212160
Sci Adv. 2021 Jan 22;7(4):
pubmed: 33523946
Biochimie. 1992 Jul-Aug;74(7-8):723-33
pubmed: 1391052
FEMS Microbiol Lett. 2020 Sep 1;367(17):
pubmed: 32821945