Production and structure prediction of amylases from Chlorella vulgaris.

Bioinformatic tools Culture mode Enzymes Glycoside hydrolase Microalgae Molecular modeling Starch

Journal

Environmental science and pollution research international
ISSN: 1614-7499
Titre abrégé: Environ Sci Pollut Res Int
Pays: Germany
ID NLM: 9441769

Informations de publication

Date de publication:
Oct 2021
Historique:
received: 25 01 2021
accepted: 06 05 2021
pubmed: 12 5 2021
medline: 25 9 2021
entrez: 11 5 2021
Statut: ppublish

Résumé

Amylases are enzymes required for starch degradation and are naturally produced by many microorganisms. These enzymes are used in several fields such as food processing, beverage, and medicine as well as in the formulation of enzymatic detergents proving their significance in modern biotechnology. In this study, a three-stage growth mode was applied to enhance starch production and amylase detection from Chlorella vulgaris. Stress conditions applied in the second stage of cultivation led to an accumulation of proteins (75% DW) and starch (21% DW) and a decrease in biomass. Amylase activities were detected and they showed high production levels especially on day 3 (35 U/ml) and day 5 (22.5 U/ml) of the second and third stages, respectively. The bioinformatic tools used to seek amylase protein sequences from TSA database of C. vulgaris revealed 7 putative genes encoding for 4 α-amylases, 2 β-amylases, and 1 isoamylase. An in silico investigation showed that these proteins are different in their lengths as well as in their cellular localizations and oligomeric states though they share common features like CSRs of GH13 family or active site of GH14 family. In brief, this study allowed for the production and in silico characterization of amylases from C. vulgaris.

Identifiants

pubmed: 33973124
doi: 10.1007/s11356-021-14357-9
pii: 10.1007/s11356-021-14357-9
doi:

Substances chimiques

Starch 9005-25-8
Amylases EC 3.2.1.-
alpha-Amylases EC 3.2.1.1

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

51046-51059

Informations de copyright

© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Abdelkafi S, Chamkha M, Casalot L, Sayadi S, Labat M (2005) Isolation and characterization of a novel Bacillus sp., strain YAS1, capable of transforming tyrosol under hypersaline conditions. FEMS Microbiol Lett 252 (1):79–84.  https://doi.org/10.1016/j.femsle.2005.08.032
Abdelkafi S, Labat M, Ben Ali Z, Lorquin J, Saydi S (2008) Optimized conditions for the synthesis of vanillic acid under hypersaline conditions by Halomonas elongata DSM 2581T resting cells. World J Microbiol Biotechnol 24:675–680. https://doi.org/10.1007/s11274-007-9523-3
doi: 10.1007/s11274-007-9523-3
Abreu AP, Fernandes B, Vicente AA, Teixeira J, Dragone G (2012) Mixotrophic cultivation of Chlorella vulgaris using industrial dairy waste as organic carbon source. Bioresour Technol 118:61–66. https://doi.org/10.1016/j.biortech.2012.05.055
doi: 10.1016/j.biortech.2012.05.055
Aikawa S, Izumi Y, Matsuda F, Hasunuma T, Chang JS, Kondo A (2012) Synergistic enhancement of glycogen production in Arthrospira platensis by optimization of light intensity and nitrate supply. Bioresour Technol 108:211–215. https://doi.org/10.1016/j.biortech.2012.01.004
doi: 10.1016/j.biortech.2012.01.004
Andersen R, Kawachi M (2005) Traditional microalgae isolation techniques. Algal Culturing Techniques, In, pp 83–100
Behrens PW, Bingham SE, Hoeksema SD, Cohoon DL, Cox JC (1989) Studies on the incorporation of CO
doi: 10.1007/BF00003874
Ben Halima N, Borchani M, Fendri I, Khemakhem B, Gosset D, Baril P, Pichon C, Ayadi MA, Abdelkafi S (2015) Optimised amylases extraction from oat seeds and its impact on bread properties. Int J Biol Macromol 72:1213–1221. https://doi.org/10.1016/j.ijbiomac.2014.10.018
doi: 10.1016/j.ijbiomac.2014.10.018
Ben Halima N, Khemakhem B, Fendri I, Ogata H, Baril P, Pichon C, Abdelkafi S (2016) Identification of a new oat β-amylase by functional proteomics. Biochim Biophys Acta, Proteins Proteomics 1864:52–61. https://doi.org/10.1016/j.bbapap.2015.10.001
doi: 10.1016/j.bbapap.2015.10.001
Ben Hlima H, Bohli T, Kraiem M, Ouederni A, Mellouli L, Michaud P, Abdelkafi S, Smaoui S (2019a) Combined effect of Spirulina platensis and Punica granatum peel extracts: phytochemical content and antiphytophatogenic activity. Appl Sci 9:5475. https://doi.org/10.3390/app9245475
doi: 10.3390/app9245475
Ben Hlima H, Dammak M, Karkouch N, Hentati F, Laroche C, Michaud P, Fendri I, Abdelkafi S (2019b) Optimal cultivation towards enhanced biomass and Floridean starch production by Porphyridium marinum. Int J Biol Macromol 129:152–161. https://doi.org/10.1016/j.ijbiomac.2019.01.207
doi: 10.1016/j.ijbiomac.2019.01.207
Ben Hlima H, Dammak M, Karray A, Drira M, Michaud P, Fendri I, Abdelkafi S (2021) Molecular and structural characterizations of lipases from Chlorella by functional genomics. Mar Drugs 19(2):70. https://doi.org/10.3390/md19020070
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1006/abio.1976.9999
doi: 10.1006/abio.1976.9999
Brányiková I, Maršálková B, Doucha J, Brányik T, Bišová K, Zachleder V, Vítová M (2011) Microalgae novel highly efficient starch producers. Biotechnol Bioeng 108:766–776. https://doi.org/10.1002/bit.23016
doi: 10.1002/bit.23016
Brasil B d SAF, de Siqueira FG, TFC S, Zanette CM, Spier MR (2017) Microalgae and cyanobacteria as enzyme biofactories. Algal Res 25:76–89. https://doi.org/10.1016/j.algal.2017.04.035
doi: 10.1016/j.algal.2017.04.035
Cheng D, Li D, Yuan Y, Zhou L, Li X, Wu T, Wang L, Zhao Q, Wei W, Sun Y (2017) Improving carbohydrate and starch accumulation in Chlorella sp. AE10 by a novel two-stage process with cell dilution. Biotechnol Biofuels 10:75. https://doi.org/10.1186/s13068-017-0753-9
doi: 10.1186/s13068-017-0753-9
Claros MG, Vincens P (1996) Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur J Biochem 241:779–786. https://doi.org/10.1111/j.1432-1033.1996.00779.x
doi: 10.1111/j.1432-1033.1996.00779.x
Coesel SN, Baumgartner AC, Teles LM, Ramos AA, Henriques NM, Cancela L, Varela JCS (2008) Nutrient limitation is the main regulatory factor for carotenoid accumulation and for Psy and Pds steady state transcript levels in Dunaliella salina (Chlorophyta) exposed to high light and salt stress. Mar Biotechnol N Y N 10:602–611. https://doi.org/10.1007/s10126-008-9100-2
doi: 10.1007/s10126-008-9100-2
Cysewski GR, Lorenz RT (2003) Industrial production of microalgal cell-mass and secondary products - species of high potential: Haematococcus. In: Handbook of Microalgal Culture. John Wiley & Sons, Ltd, pp 281–288
Daliry S, Hallajsani A, Mohammadi RJ, Nouri H, Golzary A (2017) Investigation of optimal condition for Chlorella vulgaris microalgae growth. Glob J Environ Sci Manag 3:217–230. https://doi.org/10.22034/gjesm.2017.03.02.010
doi: 10.22034/gjesm.2017.03.02.010
Dammak M, Haase SM, Miladi R, Ben Amor F, Barkallah M, Gosset D, Pichon C, Huchzermeyer B, Fendri I, Denis M, Abdelkafi S (2016) Enhanced lipid and biomass production by a newly isolated and identified marine microalga. Lipids Health Dis:15. https://doi.org/10.1186/s12944-016-0375-4
Dammak M, Hadrich B, Miladi R, Barkallah M, Hentati F, Hachicha R, Laroche C, Michaud P, Fendri I, Abdelkafi S (2017) Effects of nutritional conditions on growth and biochemical composition of Tetraselmis sp. Lipids Health Dis 16:41. https://doi.org/10.1186/s12944-016-0378-1
doi: 10.1186/s12944-016-0378-1
Dammak M, Hadrich B, Barkallah M, Hentati F, Ben Hlima H, Pichon C, Denis M, Fendri I, Michaud P, Abdelkafi S (2018) Modelling Tetraselmis sp. growth-kinetics and optimizing bioactive-compound production through environmental conditions. Bioresour Technol 249:510–518. https://doi.org/10.1016/j.biortech.2017.10.028
doi: 10.1016/j.biortech.2017.10.028
de Andrade CJ, de Andrade LM (2017) An overview on the application of genus Chlorella in biotechnological processes. J Adv Res Biotechnol 2:1–9. https://doi.org/10.15226/2475-4714/2/1/00117
doi: 10.15226/2475-4714/2/1/00117
Delkash-Roudsari S, Zibaee A, Mozhdehi MRA (2014) Digestive α-amylase of Bacterocera oleae Gmelin (Diptera: Tephritidae): biochemical characterization and effect of proteinaceous inhibitor. J King Saud Univ - Sci 26:53–58. https://doi.org/10.1016/j.jksus.2013.05.003
Dragone G, Fernandes BD, Abreu AP, Vicente AA, Teixeira JA (2011) Nutrient limitation as a strategy for increasing starch accumulation in microalgae. Appl Energy 88:3331–3335. https://doi.org/10.1016/j.apenergy.2011.03.012
doi: 10.1016/j.apenergy.2011.03.012
Elleuch F, Ben Hlima H, Barkallah M, Baril P, Abdelkafi S, Pichon C, Fendri I (2019) Carotenoids overproduction in Dunaliella Sp.: transcriptional changes and new insights through lycopene β cyclase regulation. Appl Sci 9:5389. https://doi.org/10.3390/app9245389
doi: 10.3390/app9245389
Emanuelsson O, Nielsen H, Brunak S, von Heijne G (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300:1005–1016. https://doi.org/10.1006/jmbi.2000.3903
doi: 10.1006/jmbi.2000.3903
Fendri I, Chaari A, Dhouib A, Jlassi B, Abousalham A, Carriere F, Sayadi S, Abdelkafi S (2010) Isolation, identification and characterization of a new lipolytic Pseudomonas sp., strain AHD-1, from Tunisian soil. Environ Technol 31:87–95. https://doi.org/10.1080/09593330903369994
doi: 10.1080/09593330903369994
Finn RD, Attwood TK, Babbitt PC, Bateman A, Bork P, Bridge AJ, Gough J (2017) InterPro in 2017-beyond protein family and domain annotations. Nucleic Acids Res 45:D190–D199. https://doi.org/10.1093/nar/gkw1107
doi: 10.1093/nar/gkw1107
Gaignard C, Gargouch N, Dubessay P, Delattre C, Pierre G, Laroche C, Fendri I, Abdelkafi S, Michaud P (2019) New horizons in culture and valorization of red microalgae. Biotechnol Adv 37:193–222. https://doi.org/10.1016/j.biotechadv.2018.11.014
doi: 10.1016/j.biotechadv.2018.11.014
Gouet P, Robert X, Courcelle E (2003) ESPript/ENDscript: extracting and rendering sequence and 3D information from atomic structures of proteins. Nucleic Acids Res 31:3320–3323. https://doi.org/10.1093/nar/gkg556
doi: 10.1093/nar/gkg556
Griffiths MJ, van Hille RP, Harrison STL (2014) The effect of nitrogen limitation on lipid productivity and cell composition in Chlorella vulgaris. Appl Microbiol Biotechnol 98:2345–2356. https://doi.org/10.1007/s00253-013-5442-4
doi: 10.1007/s00253-013-5442-4
Gronau I, Moran S (2007) Optimal implementations of UPGMA and other common clustering algorithms. Inf Process Lett 104:205–210. https://doi.org/10.1016/j.ipl.2007.07.002
doi: 10.1016/j.ipl.2007.07.002
Grudzinski W, Krzeminska I, Luchowski R, Nosalewicz A, Gruszecki WI (2016) Strong-light-induced yellowing of green microalgae Chlorella: a study on molecular mechanisms of the acclimation response. Algal Res 16:245–254. https://doi.org/10.1016/j.algal.2016.03.021
doi: 10.1016/j.algal.2016.03.021
Gschloessl B, Guermeur Y, Cock JM (2008) HECTAR: a method to predict subcellular targeting in heterokonts. BMC Bioinformatics 9:393. https://doi.org/10.1186/1471-2105-9-393
doi: 10.1186/1471-2105-9-393
Guillard RRL (1975) Culture of phytoplankton for feeding marine invertebrates. In: Culture of Marine Invertebrate Animals. Springer, Boston, MA, pp 29–60
doi: 10.1007/978-1-4615-8714-9_3
Ho S-H, Chen C-Y, Chang J-S (2012) Effect of light intensity and nitrogen starvation on CO
Ho S-H, Huang S-W, Chen C-Y, Hasunuma T, Kondo A, Chang JS (2013) Characterization and optimization of carbohydrate production from an indigenous microalga Chlorella vulgaris FSP-E. Bioresour Technol 135:157–165. https://doi.org/10.1016/j.biortech.2012.10.100
doi: 10.1016/j.biortech.2012.10.100
Hu Q (2003) Environmental effects on cell composition. In: Handbook of Microalgal Culture. John Wiley & Sons, Ltd, pp 83–94
Janeček Š (2002) How many conserved sequence regions are there in the α-amylase family. Biologia (Bratisl) 57:29–41
Jerez CG, Malapascua JR, Sergejevová M, Figueroa FL, Masojídek J (2016) Effect of nutrient starvation under high irradiance on lipid and starch accumulation in Chlorella fusca (Chlorophyta). Mar Biotechnol N Y N 18:24–36. https://doi.org/10.1007/s10126-015-9664-6
doi: 10.1007/s10126-015-9664-6
Joo G, Lee W, Choi Y (2021) Heavy metal adsorption capacity of powdered Chlorella vulgaris biosorbent: effect of chemical modification and growth media. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-021-12396-w
Katoh K, Kuma KI, Toh H, Miyata T (2005) MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res 33:511–518. https://doi.org/10.1093/nar/gki198
doi: 10.1093/nar/gki198
Kottenhagen N, Gramzow L, Horn F, Pohl M, Günter T (2012) Polyglutamine and polyalanine tracts are enriched in transcription factors of plants:15 pages. https://doi.org/10.4230/OASICS.GCB.2012.93
Kralj S, Grijpstra P, van Leeuwen SS, Leemhuis H, Dobruchowska JM, van der Kaaij RM, Malik A, Oetari A, Kamerling JP, Dijkhuizen L (2011) 4,6-α-Glucanotransferase, a novel enzyme that structurally and functionally provides an evolutionary link between glycoside hydrolase enzyme families 13 and 70. Appl Environ Microbiol 77:8154–8163. https://doi.org/10.1128/AEM.05735-11
Krogh A, Larsson B, von Heijne G, Sonnhammer ELL (2001) Predicting transmembrane protein topology with a hidden markov model: application to complete genomes11Edited by F. Cohen J Mol Biol 305:567–580. https://doi.org/10.1006/jmbi.2000.4315
doi: 10.1006/jmbi.2000.4315
Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291. https://doi.org/10.1107/S0021889892009944
doi: 10.1107/S0021889892009944
Li T, Gargouri M, Feng J, Park JJ, Gao D, Miao C, Dong T, Gang DR, Chen S (2015) Regulation of starch and lipid accumulation in a microalga Chlorella sorokiniana. Bioresour Technol 180:250–257. https://doi.org/10.1016/j.biortech.2015.01.005
doi: 10.1016/j.biortech.2015.01.005
Lin P-Y, Tsai C-T, Chuang W-L, Chao YH, Pan IH, Chen YK, Lin CC, Wang BY (2017) Chlorella sorokiniana induces mitochondrial-mediated apoptosis in human non-small cell lung cancer cells and inhibits xenograft tumor growth in vivo. BMC Complement Altern Med:17. https://doi.org/10.1186/s12906-017-1611-9
Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42:D490–D495. https://doi.org/10.1093/nar/gkt1178
doi: 10.1093/nar/gkt1178
Lü B, Guo Z, Liang J (2008) Effects of the activities of key enzymes involved in starch biosynthesis on the fine structure of amylopectin in developing rice (Oryza sativa L.) endosperms. Sci China C Life Sci 51:863–871. https://doi.org/10.1007/s11427-008-0120-y
Lv J-M, Cheng L-H, Xu X-H, Zhang L, Chen HL (2010) Enhanced lipid production of Chlorella vulgaris by adjustment of cultivation conditions. Bioresour Technol 101:6797–6804. https://doi.org/10.1016/j.biortech.2010.03.120
doi: 10.1016/j.biortech.2010.03.120
Majzlová K, Pukajová Z, Janeček S (2013) Tracing the evolution of the α-amylase subfamily GH13_36 covering the amylolytic enzymes intermediate between oligo-1,6-glucosidases and neopullulanases. Carbohydr Res 367:48–57. https://doi.org/10.1016/j.carres.2012.11.022
doi: 10.1016/j.carres.2012.11.022
Markou G, Nerantzis E (2013) Microalgae for high-value compounds and biofuels production: a review with focus on cultivation under stress conditions. Biotechnol Adv 31:1532–1542. https://doi.org/10.1016/j.biotechadv.2013.07.011
doi: 10.1016/j.biotechadv.2013.07.011
Meng X, Gangoiti J, Bai Y, Pijning T, Van Leeuwen SS, Dijkhuizen L (2016) Structure–function relationships of family GH70 glucansucrase and 4,6-α-glucanotransferase enzymes, and their evolutionary relationships with family GH13 enzymes. Cell Mol Life Sci 73:2681–2706. https://doi.org/10.1007/s00018-016-2245-7
doi: 10.1007/s00018-016-2245-7
Metin K, Koç O, Ateşlier BB, Biyik HH (2010) Purification and characterization of α-amylase produced by Penicillium citrinum HBF62. Afr J Biotechnol 9:7692–7701. https://doi.org/10.5897/AJB09.1687
doi: 10.5897/AJB09.1687
Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428. https://doi.org/10.1021/ac60147a030
doi: 10.1021/ac60147a030
Mohseni A, Kube M, Fan L, Roddick FA (2020) Potential of Chlorella vulgaris and Nannochloropsis salina for nutrient and organic matter removal from municipal wastewater reverse osmosis concentrate. Environ Sci Pollut Res 27:26905–26914. https://doi.org/10.1007/s11356-020-09103-6
doi: 10.1007/s11356-020-09103-6
Monroe JD, Storm AR (2018) Review: the arabidopsis β-amylase (BAM) gene family: diversity of form and function. Plant Sci 276:163–170. https://doi.org/10.1016/j.plantsci.2018.08.016
doi: 10.1016/j.plantsci.2018.08.016
Morris HJ, Almarales A, Carrillo O, Bermúdez RC (2008) Utilisation of Chlorella vulgaris cell biomass for the production of enzymatic protein hydrolysates. Bioresour Technol 99:7723–7729. https://doi.org/10.1016/j.biortech.2008.01.080
doi: 10.1016/j.biortech.2008.01.080
Moulis C, Joucla G, Harrison D, Fabre E, Potocki-Veronese G, Monsan P, Remaud-Simeon M (2006) Understanding the polymerization mechanism of glycoside-hydrolase family 70 glucansucrases. J Biol Chem 281:31254–31267. https://doi.org/10.1074/jbc.M604850200
doi: 10.1074/jbc.M604850200
Nakamura Y (1996) Some properties of starch debranching enzymes and their possible role in amylopectin biosynthesis. Plant Sci 121:1–18. https://doi.org/10.1016/S0168-9452(96)04504-9
doi: 10.1016/S0168-9452(96)04504-9
Nayak M, Suh WI, Chang YK, Lee B (2019) Exploration of two-stage cultivation strategies using nitrogen starvation to maximize the lipid productivity in Chlorella sp. HS2. Bioresour Technol 276:110–118. https://doi.org/10.1016/j.biortech.2018.12.111
doi: 10.1016/j.biortech.2018.12.111
Nehmé R, Atieh C, Fayad S, Claude B, Chartier A, Tannoury M, Elleuch F, Abdelkafi S, Pichon C, Morin P (2017) Microalgae amino acid extraction and analysis at nanomolar level using electroporation and capillary electrophoresis with laser-induced fluorescence detection. J Sep Sci 40(2):558–566. https://doi.org/10.1002/jssc.201601005
doi: 10.1002/jssc.201601005
Nomaguchi T, Maeda Y, Liang Y, Yoshino T, Asahi T, Tanaka T (2018) Comprehensive analysis of triacylglycerol lipases in the oleaginous diatom Fistulifera solaris JPCC DA0580 with transcriptomics under lipid degradation. J Biosci Bioeng 126:258–265. https://doi.org/10.1016/j.jbiosc.2018.03.003
doi: 10.1016/j.jbiosc.2018.03.003
Panahi Y, Yari Khosroushahi A, Sahebkar A, Heidari HR (2019) Impact of cultivation condition and media content on Chlorella vulgaris composition. Adv Pharm Bull 9:182–194. https://doi.org/10.15171/apb.2019.022
doi: 10.15171/apb.2019.022
Pelassa I, Corà D, Cesano F, Monje FJ, Montarolo PG, Fiumara F (2014) Association of polyalanine and polyglutamine coiled coils mediates expansion disease-related protein aggregation and dysfunction. Hum Mol Genet 23:3402–3420. https://doi.org/10.1093/hmg/ddu049
doi: 10.1093/hmg/ddu049
Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786. https://doi.org/10.1038/nmeth.1701
doi: 10.1038/nmeth.1701
Ponnuchamy K, Muthiah R, Kumaraguru A (2010) Solvent extraction and spectrophotometric determination of pigments of some algal species from the shore of Puthumadam, Southeast coast of India. Int J Oceans Oceanogr 1:29–34
Priyadarshini S, Ray P (2019) Exploration of detergent-stable alkaline α-amylase AA7 from Bacillus sp strain SP-CH7 isolated from Chilika Lake. Int J Biol Macromol 140:825–832. https://doi.org/10.1016/j.ijbiomac.2019.08.006
doi: 10.1016/j.ijbiomac.2019.08.006
Puspasari F, Radjasa OK, Noer AS, Nurachman Z, Syah YM, van der Maarel MJEC, Dijkhuizen L, Janecek S, Natalia D (2013) Raw starch-degrading α-amylase from Bacillus aquimaris MKSC 6.2: isolation and expression of the gene, bioinformatics and biochemical characterization of the recombinant enzyme. J Appl Microbiol 114:108–120. https://doi.org/10.1111/jam.12025
doi: 10.1111/jam.12025
Ramachandran GT, Sasisekharan V (1968) Conformation of polypeptides and proteins. Adv Protein Chem 23:283–437. https://doi.org/10.1016/S0065-3233(08)60402-7
doi: 10.1016/S0065-3233(08)60402-7
Ranjani V, Janeček Š, Chai KP, Shahir S, Rahman RNZRA, Chan KG, Goh KM (2014) Protein engineering of selected residues from conserved sequence regions of a novel Anoxybacillus α-amylase. Sci Rep 4:5850. https://doi.org/10.1038/srep05850
doi: 10.1038/srep05850
Rombel IT, Sykes KF, Rayner S, Johnston SA (2002) ORF Finder: a vector for high-throughput gene identification. Gene 282:33–41. https://doi.org/10.1016/s0378-1119(01)00819-8
doi: 10.1016/s0378-1119(01)00819-8
Salem K, Elgharbi F, Ben Hlima H, Perduca M, Sayari A, Hmida-Sayari A (2020) Biochemical characterization and structural insights into the high substrate affinity of a dimeric and Ca2+ independent Bacillus subtilis α-amylase. Biotechnol Prog 36:e2964. https://doi.org/10.1002/btpr.2964
doi: 10.1002/btpr.2964
Savojardo C, Bruciaferri N, Tartari G, Perduca M, Sayari A, Hmida-Sayari A (2020) DeepMito: accurate prediction of protein sub-mitochondrial localization using convolutional neural networks. Bioinformatics 36:56–64. https://doi.org/10.1093/bioinformatics/btz512
doi: 10.1093/bioinformatics/btz512
Sim L, Beeren SR, Findinier J, Dauvillée D, Ball SG, Henriksen A, Palcic MM (2014) Crystal structure of the Chlamydomonas starch debranching enzyme isoamylase ISA1 reveals insights into the mechanism of branch trimming and complex assembly. J Biol Chem 289:22991–23003. https://doi.org/10.1074/jbc.M114.565044
doi: 10.1074/jbc.M114.565044
Song H-N, Jung T-Y, Park J-T, Park PC, Myung PK, Boos W, Woo EJ, Park KH (2010) Structural rationale for the short branched substrate specificity of the glycogen debranching enzyme GlgX. Proteins 78:1847–1855. https://doi.org/10.1002/prot.22697
doi: 10.1002/prot.22697
Stam MR, Danchin EGJ, Rancurel C, Coutinho PM, Henrissat B (2006) Dividing the large glycoside hydrolase family 13 into subfamilies: towards improved functional annotations of alpha-amylase-related proteins. Protein Eng Des Sel PEDS 19:555–562. https://doi.org/10.1093/protein/gzl044
doi: 10.1093/protein/gzl044
Sunaga Y, Maeda Y, Yabuuchi T, Muto M, Yoshino T, Tanaka T (2015) Chloroplast-targeting protein expression in the oleaginous diatom Fistulifera solaris JPCC DA0580 toward metabolic engineering. J Biosci Bioeng 119:28–34. https://doi.org/10.1016/j.jbiosc.2014.06.008
doi: 10.1016/j.jbiosc.2014.06.008
Takeshita T, Ota S, Yamazaki T, Hirata A, Zachleder V, Kawano S (2014) Starch and lipid accumulation in eight strains of six Chlorella species under comparatively high light intensity and aeration culture conditions. Bioresour Technol 158:127–134. https://doi.org/10.1016/j.biortech.2014.01.135
doi: 10.1016/j.biortech.2014.01.135
Takeshita T, Takeda K, Ota S, Yamazaki T, Kawano S (2015) A simple method for measuring the starch and lipid contents in the cell of microalgae. Cytologia (Tokyo) 80:475–481. https://doi.org/10.1508/cytologia.80.475
doi: 10.1508/cytologia.80.475
Woo E-J, Lee S, Cha H, Park JT, Yoon SM, Song HN, Park KH (2008) Structural insight into the bifunctional mechanism of the glycogen-debranching enzyme TreX from the Archaeon Sulfolobus solfataricus. J Biol Chem 283:28641–28648. https://doi.org/10.1074/jbc.M802560200
doi: 10.1074/jbc.M802560200
Zhu S, Wang Y, Huang W, Xu J, Wang Z, Xu J, Yuan Z (2014) Enhanced accumulation of carbohydrate and starch in Chlorella zofingiensis induced by nitrogen starvation. Appl Biochem Biotechnol 174:2435–2445. https://doi.org/10.1007/s12010-014-1183-9
doi: 10.1007/s12010-014-1183-9

Auteurs

Hajer Ben Hlima (H)

Laboratoire de Génie Enzymatique et de Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038, Sfax, Tunisia.

Aida Karray (A)

Laboratoire de Biochimie et de Génie Enzymatique des Lipases, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3018, Sfax, Tunisia.

Mouna Dammak (M)

Laboratoire de Génie Enzymatique et de Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038, Sfax, Tunisia.

Fatma Elleuch (F)

Laboratoire de Génie Enzymatique et de Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038, Sfax, Tunisia.

Philippe Michaud (P)

Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000, Clermont-Ferrand, France.

Imen Fendri (I)

Laboratoire de Biotechnologie des Plantes Appliquée à l'Amélioration des Plantes Faculté des Sciences de Sfax, Université de Sfax, Sfax, Tunisia.

Slim Abdelkafi (S)

Laboratoire de Génie Enzymatique et de Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038, Sfax, Tunisia. slim.abdelkafi@enis.tn.

Articles similaires

Animals Hemiptera Insect Proteins Phylogeny Insecticides
Fragaria Light Plant Leaves Osmosis Stress, Physiological
Cicer Germination Proteolysis Seeds Plant Proteins

Mutational analysis of Phanerochaete chrysosporium´s purine transporter.

Mariana Barraco-Vega, Manuel Sanguinetti, Gabriela da Rosa et al.
1.00
Phanerochaete Fungal Proteins Purines Aspergillus nidulans DNA Mutational Analysis

Classifications MeSH