DNA methylation profiling of a cnidarian-algal symbiosis using nanopore sequencing.


Journal

G3 (Bethesda, Md.)
ISSN: 2160-1836
Titre abrégé: G3 (Bethesda)
Pays: England
ID NLM: 101566598

Informations de publication

Date de publication:
14 07 2021
Historique:
received: 30 01 2021
accepted: 15 04 2021
pubmed: 15 5 2021
medline: 15 11 2022
entrez: 14 5 2021
Statut: ppublish

Résumé

Symbiosis with protists is common among cnidarians such as corals and sea anemones and is associated with homeostatic and phenotypic changes in the host that could have epigenetic underpinnings, such as methylation of CpG dinucleotides. We leveraged the sensitivity to base modifications of nanopore sequencing to probe the effect of symbiosis with the chlorophyte Elliptochloris marina on methylation in the sea anemone Anthopleura elegantissima. We first validated the approach by comparison of nanopore-derived methylation levels with CpG depletion analysis of a published transcriptome, finding that high methylation levels are associated with CpG depletion as expected. Next, using reads generated exclusively from aposymbiotic anemones, a largely complete draft genome comprising 243 Mb was assembled. Reads from aposymbiotic and symbiotic sea anemones were then mapped to this genome and assessed for methylation using the program Nanopolish, which detects signal disruptions from base modifications as they pass through the nanopore. Based on assessment of 452,841 CpGs for which there was adequate read coverage (approximately 8% of the CpGs in the genome), symbiosis with E. marina was, surprisingly, associated with only subtle changes in the host methylome. However, we did identify one extended genomic region with consistently higher methylation among symbiotic individuals. The region was associated with a DNA polymerase zeta that is noted for its role in translesion synthesis, which opens interesting questions about the biology of this symbiosis. Our study highlights the power and relative simplicity of nanopore sequencing for studies of nucleic acid base modifications in non-model species.

Identifiants

pubmed: 33989381
pii: 6275752
doi: 10.1093/g3journal/jkab148
pmc: PMC8496274
pii:
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© The Author(s) 2021. Published by Oxford University Press on behalf of Genetics Society of America.

Auteurs

James L Dimond (JL)

University of Washington, School of Aquatic and Fishery Sciences, Seattle, WA 98195, USA.
Western Washington University, Shannon Point Marine Center, Anacortes, WA 98221, USA.

Nhung Nguyen (N)

Department of Biology, Hobart and William Smith Colleges, Geneva, NY 14456, USA.

Steven B Roberts (SB)

University of Washington, School of Aquatic and Fishery Sciences, Seattle, WA 98195, USA.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH