Relapse Protection Following Early Cytomegalovirus Reactivation after Hematopoietic Stem Cell Transplantation Is Limited to HLA-C Killer Cell Immunoglobulin-Like Receptor Ligand Homozygous Recipients.


Journal

Transplantation and cellular therapy
ISSN: 2666-6367
Titre abrégé: Transplant Cell Ther
Pays: United States
ID NLM: 101774629

Informations de publication

Date de publication:
08 2021
Historique:
received: 17 02 2021
revised: 23 04 2021
accepted: 29 04 2021
pubmed: 16 5 2021
medline: 3 8 2021
entrez: 15 5 2021
Statut: ppublish

Résumé

Although the risk for nonrelapse mortality (NRM) associated with early cytomegalovirus (CMV) reactivation (CMVR) after allogeneic hematopoietic stem cell transplantation (HSCT) is well established, debate is ongoing on whether CMVR may reduce the risk of primary disease relapse. The aim of this study was to evaluate relapse protection following early CMV reactivation after HSCT in the context of the recipient HLA-C killer cell immunoglobulin-like receptor ligands (KIRLs). In this retrospective bicentric study, 406 matched related or unrelated donor transplantations for acute myelogenous leukemia (AML) or myelodysplastic syndrome (MDS) were stratified by HLA-C KIRL group (homozygous versus heterozygous) and analyzed separately for the impact of early CMVR on the cumulative incidences of relapse, NRM, and acute and chronic graft-versus-host-disease (GVHD) using landmark and multistate analyses. By landmark analysis of patients alive and relapse-free at 45 days post-HSCT, HLA-C KIRL homozygous recipients (C1/1 or C2/2) had a lower risk of subsequent relapse if CMVR occurred before this landmark (subhazard ratio [sHR], 0.36; P = .002). In contrast, in HLA-C KIRL heterozygous (C1/2) recipients, early CMVR had no impact on subsequent relapse (sHR, 0.88; P = .63). NRM (sHR, 3.31; P < .001) and grade III-IV acute GVHD (sHR, 2.60; P = .04) were significantly increased after early CMVR in the homozygous cohort, but not in the heterozygous cohort (NRM: sHR, 1.23; P = .53; grade III-IV acute GVHD: sHR, 1.40; P = .50). Multivariable landmark analyses and a multistate model confirmed the limitation of the relapse-protective effect of early CMVR to the homozygous cohort. Chronic GVHD and overall survival were not influenced in neither cohort. An antileukemic effect of early CMVR after HSCT for AML/MDS was significant but strictly limited to recipients homozygous for HLA-C KIRL. However, particularly in this cohort, CMVR had an adverse impact on aGVHD and NRM.

Identifiants

pubmed: 33991724
pii: S2666-6367(21)00889-7
doi: 10.1016/j.jtct.2021.04.028
pii:
doi:

Substances chimiques

HLA-C Antigens 0
Ligands 0
Receptors, KIR 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

686.e1-686.e9

Informations de copyright

Copyright © 2021 The American Society for Transplantation and Cellular Therapy. Published by Elsevier Inc. All rights reserved.

Auteurs

Alexander Nikoloudis (A)

Department of Internal Medicine I: Hematology with Stem Cell Transplantation, Hemostaseology and Medical Oncology, Ordensklinikum Linz Elisabethinen, Linz, Austria; Medical Faculty, Johannes Kepler University, Linz, Austria. Electronic address: alexander.nikoloudis@gmail.com.

Helga Wagner (H)

Department of Applied Statistics: Medical Statistics and Biometry and Competence Center for Clinical Studies, Johannes Kepler University, Linz, Austria.

Sigrid Machherndl-Spandl (S)

Department of Internal Medicine I: Hematology with Stem Cell Transplantation, Hemostaseology and Medical Oncology, Ordensklinikum Linz Elisabethinen, Linz, Austria; Medical Faculty, Johannes Kepler University, Linz, Austria.

Veronika Buxhofer-Ausch (V)

Department of Internal Medicine I: Hematology with Stem Cell Transplantation, Hemostaseology and Medical Oncology, Ordensklinikum Linz Elisabethinen, Linz, Austria; Medical Faculty, Johannes Kepler University, Linz, Austria.

Irene Strassl (I)

Department of Internal Medicine I: Hematology with Stem Cell Transplantation, Hemostaseology and Medical Oncology, Ordensklinikum Linz Elisabethinen, Linz, Austria.

Olga Stiefel (O)

Department of Internal Medicine I: Hematology with Stem Cell Transplantation, Hemostaseology and Medical Oncology, Ordensklinikum Linz Elisabethinen, Linz, Austria.

Dagmar Wipplinger (D)

Department of Internal Medicine I: Hematology with Stem Cell Transplantation, Hemostaseology and Medical Oncology, Ordensklinikum Linz Elisabethinen, Linz, Austria.

Robert Milanov (R)

Department of Internal Medicine I: Hematology with Stem Cell Transplantation, Hemostaseology and Medical Oncology, Ordensklinikum Linz Elisabethinen, Linz, Austria.

Emine Kaynak (E)

Department of Internal Medicine I: Hematology with Stem Cell Transplantation, Hemostaseology and Medical Oncology, Ordensklinikum Linz Elisabethinen, Linz, Austria.

Petra Hasengruber (P)

Department of Internal Medicine I: Hematology with Stem Cell Transplantation, Hemostaseology and Medical Oncology, Ordensklinikum Linz Elisabethinen, Linz, Austria.

Michaela Binder (M)

Department of Internal Medicine I: Hematology with Stem Cell Transplantation, Hemostaseology and Medical Oncology, Ordensklinikum Linz Elisabethinen, Linz, Austria.

Ansgar Weltermann (A)

Department of Internal Medicine I: Hematology with Stem Cell Transplantation, Hemostaseology and Medical Oncology, Ordensklinikum Linz Elisabethinen, Linz, Austria; Medical Faculty, Johannes Kepler University, Linz, Austria.

Andreas Petzer (A)

Department of Internal Medicine I: Hematology with Stem Cell Transplantation, Hemostaseology and Medical Oncology, Ordensklinikum Linz Elisabethinen, Linz, Austria.

Dominik Wolf (D)

University Hospital of Internal Medicine V, Hematology & Oncology, Medical University of Innsbruck, Innsbruck, Austria.

David Nachbaur (D)

University Hospital of Internal Medicine V, Hematology & Oncology, Medical University of Innsbruck, Innsbruck, Austria.

Johannes Clausen (J)

Department of Internal Medicine I: Hematology with Stem Cell Transplantation, Hemostaseology and Medical Oncology, Ordensklinikum Linz Elisabethinen, Linz, Austria; Medical Faculty, Johannes Kepler University, Linz, Austria.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH