Protein kinase CK2: a potential therapeutic target for diverse human diseases.
COVID-19
/ enzymology
Cardiovascular Diseases
/ drug therapy
Casein Kinase II
/ antagonists & inhibitors
Cystic Fibrosis
/ drug therapy
Eye Diseases
/ drug therapy
Humans
Mental Disorders
/ drug therapy
Mutation
Phosphorylation
Protein Kinase Inhibitors
/ therapeutic use
SARS-CoV-2
Signal Transduction
/ drug effects
COVID-19 Drug Treatment
Journal
Signal transduction and targeted therapy
ISSN: 2059-3635
Titre abrégé: Signal Transduct Target Ther
Pays: England
ID NLM: 101676423
Informations de publication
Date de publication:
17 05 2021
17 05 2021
Historique:
received:
25
09
2020
accepted:
22
03
2021
revised:
19
03
2021
entrez:
17
5
2021
pubmed:
18
5
2021
medline:
1
6
2021
Statut:
epublish
Résumé
CK2 is a constitutively active Ser/Thr protein kinase, which phosphorylates hundreds of substrates, controls several signaling pathways, and is implicated in a plethora of human diseases. Its best documented role is in cancer, where it regulates practically all malignant hallmarks. Other well-known functions of CK2 are in human infections; in particular, several viruses exploit host cell CK2 for their life cycle. Very recently, also SARS-CoV-2, the virus responsible for the COVID-19 pandemic, has been found to enhance CK2 activity and to induce the phosphorylation of several CK2 substrates (either viral and host proteins). CK2 is also considered an emerging target for neurological diseases, inflammation and autoimmune disorders, diverse ophthalmic pathologies, diabetes, and obesity. In addition, CK2 activity has been associated with cardiovascular diseases, as cardiac ischemia-reperfusion injury, atherosclerosis, and cardiac hypertrophy. The hypothesis of considering CK2 inhibition for cystic fibrosis therapies has been also entertained for many years. Moreover, psychiatric disorders and syndromes due to CK2 mutations have been recently identified. On these bases, CK2 is emerging as an increasingly attractive target in various fields of human medicine, with the advantage that several very specific and effective inhibitors are already available. Here, we review the literature on CK2 implication in different human pathologies and evaluate its potential as a pharmacological target in the light of the most recent findings.
Identifiants
pubmed: 33994545
doi: 10.1038/s41392-021-00567-7
pii: 10.1038/s41392-021-00567-7
pmc: PMC8126563
doi:
Substances chimiques
Protein Kinase Inhibitors
0
Casein Kinase II
EC 2.7.11.1
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
183Subventions
Organisme : Associazione Italiana per la Ricerca sul Cancro (Italian Association for Cancer Research)
ID : IG 18756
Organisme : AFM-Téléthon (French Muscular Dystrophy Association)
ID : 22974
Organisme : Fondazione per la Ricerca sulla Fibrosi Cistica (Fondazione FFC)
ID : FFC#12/2017
Organisme : Fondazione per la Ricerca sulla Fibrosi Cistica (Fondazione FFC)
ID : FFC#11/2019
Références
Venerando, A., Ruzzene, M. & Pinna, L. A. Casein kinase: the triple meaning of a misnomer. Biochem. J. 460, 141–156 (2014).
pubmed: 24825444
doi: 10.1042/BJ20140178
Meggio, F. & Pinna, L. A. One-thousand-and-one substrates of protein kinase CK2? FASEB J. 17, 349–368 (2003).
pubmed: 12631575
doi: 10.1096/fj.02-0473rev
Ruzzene, M., Tosoni, K., Zanin, S., Cesaro, L. & Pinna, L. A. Protein kinase CK2 accumulation in ‘oncophilic’ cells: causes and effects. Mol. Cell. Biochem. 6, 5–10 (2011).
doi: 10.1007/s11010-011-0959-2
Pinna, L. A. Protein kinase CK2: a challenge to canons. J. Cell. Sci. 115, 3873–3878 (2002).
pubmed: 12244125
doi: 10.1242/jcs.00074
St-Denis, N. A. & Litchfield, D. W. Protein kinase CK2 in health and disease: From birth to death: the role of protein kinase CK2 in the regulation of cell proliferation and survival. Cell. Mol. Life Sci. 66, 1817–1829 (2009).
pubmed: 19387552
doi: 10.1007/s00018-009-9150-2
Ruzzene, M. & Pinna, L. A. Addiction to protein kinase CK2: a common denominator of diverse cancer cells? Biochim. Biophys. Acta 1804, 499–504 (2010).
pubmed: 19665589
doi: 10.1016/j.bbapap.2009.07.018
Fragoso, R. & Barata, J. T. Kinases, tails and more: regulation of PTEN function by phosphorylation. Methods 77–78, 75–81 (2015).
pubmed: 25448482
doi: 10.1016/j.ymeth.2014.10.015
Ruzzene, M., Bertacchini, J., Toker, A. & Marmiroli, S. Cross-talk between the CK2 and AKT signaling pathways in cancer. Adv. Biol. Regul. 64, 1–8 (2017).
pubmed: 28373060
doi: 10.1016/j.jbior.2017.03.002
Dominguez, I., Sonenshein, G. E. & Seldin, D. C. Protein kinase CK2 in health and disease: CK2 and its role in Wnt and NF-kappaB signaling: linking development and cancer. Cell. Mol. Life Sci. 66, 1850–1857 (2009).
pubmed: 19387549
pmcid: 3905806
doi: 10.1007/s00018-009-9153-z
Wang, D., Westerheide, S. D., Hanson, J. L. & Baldwin, A. S. Tumor necrosis factor alpha-induced phosphorylation of RelA/p65 on Ser529 is controlled by casein kinase II. J. Biol. Chem. 275, 32592–32597 (2000).
pubmed: 10938077
doi: 10.1074/jbc.M001358200
Manni, S. et al. Protein kinase CK2 inhibition down modulates the NF-κB and STAT3 survival pathways, enhances the cellular proteotoxic stress and synergistically boosts the cytotoxic effect of bortezomib on multiple myeloma and mantle cell lymphoma cells. PLoS ONE 8, e75280 (2013).
pubmed: 24086494
pmcid: 3785505
doi: 10.1371/journal.pone.0075280
Zheng, Y. et al. A CK2-dependent mechanism for activation of the JAK-STAT signaling pathway. Blood 118, 156–166 (2011).
pubmed: 21527517
pmcid: 3139382
doi: 10.1182/blood-2010-01-266320
Kalathur, M. et al. A chemogenomic screening identifies CK2 as a target for pro-senescence therapy in PTEN-deficient tumours. Nat. Commun. 6, 7227 (2015).
pubmed: 26085373
doi: 10.1038/ncomms8227
Rabalski, A. J., Gyenis, L. & Litchfield, D. W. Molecular pathways: emergence of protein kinase CK2 (CSNK2) as a potential target to inhibit survival and DNA damage response and repair pathways in cancer cells. Clin. Cancer Res. 22, 2840–2847 (2016).
pubmed: 27306791
doi: 10.1158/1078-0432.CCR-15-1314
Götz, C., Bachmann, C. & Montenarh, M. Inhibition of protein kinase CK2 leads to a modulation of androgen receptor dependent transcription in prostate cancer cells. Prostate 67, 125–134 (2007).
pubmed: 17044081
doi: 10.1002/pros.20471
Trembley, J. H. et al. CK2 pro-survival role in prostate cancer is mediated via maintenance and promotion of androgen receptor and NFκB p65 expression. Pharmaceuticals 12, 89 (2019).
Jia, H. et al. Casein kinase 2 promotes Hedgehog signaling by regulating both smoothened and Cubitus interruptus. J. Biol. Chem. 285, 37218–37226 (2010).
pubmed: 20876583
pmcid: 2988328
doi: 10.1074/jbc.M110.174565
Trembley, J. H. et al. Emergence of protein kinase CK2 as a key target in cancer therapy. Biofactors 36, 187–195 (2010).
pubmed: 20533398
pmcid: 2916697
doi: 10.1002/biof.96
Zhang, S. et al. Inhibition of CK2α down-regulates Notch1 signalling in lung cancer cells. J. Cell. Mol. Med. 17, 854–862 (2013).
pubmed: 23651443
pmcid: 3729857
doi: 10.1111/jcmm.12068
de Gooijer, M. C., Guillén, N. M., Bernards, R., Wurdinger, T. & van Tellingen, O. An experimenter’s guide to glioblastoma invasion pathways. Trends Mol. Med. 24, 763–780 (2018).
pubmed: 30072121
doi: 10.1016/j.molmed.2018.07.003
Battistutta, R., De Moliner, E., Sarno, S., Zanotti, G. & Pinna, L. A. Structural features underlying selective inhibition of protein kinase CK2 by ATP site-directed tetrabromo-2-benzotriazole. Protein Sci. 10, 2200–2206 (2001).
pubmed: 11604527
pmcid: 2374052
doi: 10.1110/ps.19601
Viht, K. et al. Acetoxymethyl ester of tetrabromobenzimidazole-peptoid conjugate for inhibition of protein kinase CK2 in living cells. Bioconjug. Chem. 26, 2324–2335 (2015).
pubmed: 26559659
doi: 10.1021/acs.bioconjchem.5b00383
Cozza, G. et al. Design, validation and efficacy of bisubstrate inhibitors specifically affecting ecto-CK2 kinase activity. Biochem. J. 471, 415–430 (2015).
pubmed: 26349539
doi: 10.1042/BJ20141127
Laudet, B. et al. Structure-based design of small peptide inhibitors of protein kinase CK2 subunit interaction. Biochem J. 408, 363–373 (2007).
pubmed: 17714077
pmcid: 2267368
doi: 10.1042/BJ20070825
Prudent, R. et al. Identification of polyoxometalates as nanomolar noncompetitive inhibitors of protein kinase CK2. Chem. Biol. 15, 683–692 (2008).
pubmed: 18635005
doi: 10.1016/j.chembiol.2008.05.018
Perea, S. E., Baladrón, I., Valenzuela, C. & Perera, Y. CIGB-300: a peptide-based drug that impairs the protein kinase CK2-mediated phosphorylation. Semin. Oncol. 45, 58–67 (2018).
pubmed: 30318085
doi: 10.1053/j.seminoncol.2018.04.006
Battistutta, R. et al. Unprecedented selectivity and structural determinants of a new class of protein kinase CK2 inhibitors in clinical trials for the treatment of cancer. Biochemistry 50, 8478–8488 (2011).
pubmed: 21870818
doi: 10.1021/bi2008382
Nie, Z. et al. Structure-based design, synthesis, and study of pyrazolo[1,5-a][1,3,5]triazine derivatives as potent inhibitors of protein kinase CK2. Bioorg. Med. Chem. Lett. 17, 4191–4195 (2007).
pubmed: 17540560
doi: 10.1016/j.bmcl.2007.05.041
Oshima, T. et al. Cell-based screen identifies a new potent and highly selective CK2 inhibitor for modulation of circadian rhythms and cancer cell growth. Sci. Adv. 5, eaau9060 (2019).
pubmed: 30746467
pmcid: 6357737
doi: 10.1126/sciadv.aau9060
Borgo, C. et al. Comparing the efficacy and selectivity of Ck2 inhibitors. A phosphoproteomics approach. Eur. J. Med. Chem. 214, 113217 (2021).
pubmed: 33548633
doi: 10.1016/j.ejmech.2021.113217
Silva-Pavez, E. et al. CK2 inhibition with silmitasertib promotes methuosis-like cell death associated to catastrophic massive vacuolization of colorectal cancer cells. Cell Death Dis. 10, 73 (2019).
pubmed: 30683840
pmcid: 6347595
doi: 10.1038/s41419-019-1306-x
D’Amore, C. et al. ‘Janus’ efficacy of CX-5011: CK2 inhibition and methuosis induction by independent mechanisms. Biochim. Biophys. Acta Mol. Cell Res. 1867, 118807 (2020).
pubmed: 32745724
doi: 10.1016/j.bbamcr.2020.118807
Cozza, G. The development of CK2 inhibitors: from traditional pharmacology to in silico rational drug design. Pharmaceuticals 10, 26 (2017).
Cozza, G. & Pinna, L. A. Casein kinases as potential therapeutic targets. Expert Opin. Ther. Targets 20, 319–340 (2016).
pubmed: 26565594
doi: 10.1517/14728222.2016.1091883
Qiao, Y. et al. Small molecule modulators targeting protein kinase CK1 and CK2. Eur. J. Medicinal Chem. 181, 111581 (2019).
doi: 10.1016/j.ejmech.2019.111581
Di Maira, G. et al. The protein kinase CK2 contributes to the malignant phenotype of cholangiocarcinoma cells. Oncogenesis 8, 61 (2019).
pubmed: 31641101
pmcid: 6805921
doi: 10.1038/s41389-019-0171-x
D’Amore, C., Borgo, C., Sarno, S. & Salvi, M. Role of CK2 inhibitor CX-4945 in anti-cancer combination therapy - potential clinical relevance. Cell. Oncol. 43, 1003–1016 (2020).
doi: 10.1007/s13402-020-00566-w
Borgo, C. & Ruzzene, M. Protein kinase CK2 inhibition as a pharmacological strategy. Adv. Protein Chem. Struct. Biol. 124, 23–46 (2021).
Seldin, D. C. & Leder, P. Casein kinase II alpha transgene-induced murine lymphoma: relation to theileriosis in cattle. Science 267, 894–897 (1995).
pubmed: 7846532
doi: 10.1126/science.7846532
Buljan, M. et al. Kinase interaction network expands functional and disease roles of human kinases. Mol. Cell 79, 504–520.e9 (2020).
pubmed: 32707033
pmcid: 7427327
doi: 10.1016/j.molcel.2020.07.001
Duncan, J. S. et al. Regulation of cell proliferation and survival: convergence of protein kinases and caspases. Biochim. Biophys. Acta 1804, 505–510 (2010).
pubmed: 19900592
doi: 10.1016/j.bbapap.2009.11.001
Borgo, C. & Ruzzene, M. Role of protein kinase CK2 in antitumor drug resistance. J. Exp. Clin. Cancer Res. 38, 287 (2019).
pubmed: 31277672
pmcid: 6612148
doi: 10.1186/s13046-019-1292-y
Buontempo, F. et al. Cytotoxic activity of the casein kinase 2 inhibitor CX-4945 against T-cell acute lymphoblastic leukemia: targeting the unfolded protein response signaling. Leukemia 28, 543–553 (2014).
pubmed: 24253024
doi: 10.1038/leu.2013.349
Manni, S. et al. Protein kinase CK2 protects multiple myeloma cells from ER stress-induced apoptosis and from the cytotoxic effect of HSP90 inhibition through regulation of the unfolded protein response. Clin. Cancer Res. 18, 1888–1900 (2012).
pubmed: 22351691
doi: 10.1158/1078-0432.CCR-11-1789
Miyata, Y. Protein kinase CK2 in health and disease: CK2: the kinase controlling the Hsp90 chaperone machinery. Cell. Mol. Life Sci. 66, 1840–1849 (2009).
pubmed: 19387550
doi: 10.1007/s00018-009-9152-0
Schaefer, S., Svenstrup, T. H. & Guerra, B. The small-molecule kinase inhibitor D11 counteracts 17-AAG-mediated up-regulation of HSP70 in brain cancer cells. PLoS ONE 12, e0177706 (2017).
pubmed: 28542269
pmcid: 5436671
doi: 10.1371/journal.pone.0177706
Borgo, C. et al. Dependence of HSP27 cellular level on protein kinase CK2 discloses novel therapeutic strategies. Biochim. Biophys. Acta 1862, 2902–2910 (2018).
doi: 10.1016/j.bbagen.2018.09.014
Cox, M. L. & Meek, D. W. Phosphorylation of serine 392 in p53 is a common and integral event during p53 induction by diverse stimuli. Cell. Signal. 22, 564–571 (2010).
pubmed: 19932175
doi: 10.1016/j.cellsig.2009.11.014
Götz, C., Kartarius, S., Scholtes, P., Nastainczyk, W. & Montenarh, M. Identification of a CK2 phosphorylation site in mdm2. Eur. J. Biochem. 266, 493–501 (1999).
pubmed: 10561590
doi: 10.1046/j.1432-1327.1999.00882.x
Mandato, E., Manni, S., Zaffino, F., Semenzato, G. & Piazza, F. Targeting CK2-driven non-oncogene addiction in B-cell tumors. Oncogene 35, 6045–6052 (2016).
pubmed: 27041560
doi: 10.1038/onc.2016.86
Gowda, C. et al. Cellular signaling and epigenetic regulation of gene expression in leukemia. Adv. Biol. Regul. 75, 100665 (2020).
pubmed: 31623972
doi: 10.1016/j.jbior.2019.100665
Scaglioni, P. P. et al. A CK2-dependent mechanism for degradation of the PML tumor suppressor. Cell 126, 269–283 (2006).
pubmed: 16873060
doi: 10.1016/j.cell.2006.05.041
Gowda, C. et al. Casein kinase II (CK2) as a therapeutic target for hematological malignancies. Curr. Pharm. Des. 23, 95–107 (2017).
pubmed: 27719640
Trembley, J. H., Wang, G., Unger, G., Slaton, J. & Ahmed, K. Protein kinase CK2 in health and disease: CK2: a key player in cancer biology. Cell. Mol. Life Sci. 66, 1858–1867 (2009).
pubmed: 19387548
pmcid: 4385580
doi: 10.1007/s00018-009-9154-y
Unger, G. M., Davis, A. T., Slaton, J. W. & Ahmed, K. Protein kinase CK2 as regulator of cell survival: implications for cancer therapy. Curr. Cancer Drug Targets 4, 77–84 (2004).
pubmed: 14965269
doi: 10.2174/1568009043481687
Benavent Acero, F. et al. CIGB-300, an anti-CK2 peptide, inhibits angiogenesis, tumor cell invasion and metastasis in lung cancer models. Lung Cancer 107, 14–21 (2017).
pubmed: 27319334
doi: 10.1016/j.lungcan.2016.05.026
Im, D.-K., Cheong, H., Lee, J. S., Oh, M.-K. & Yang, K. M. Protein kinase CK2-dependent aerobic glycolysis-induced lactate dehydrogenase A enhances the migration and invasion of cancer cells. Sci. Rep. 9, 5337 (2019).
pubmed: 30926903
pmcid: 6441004
doi: 10.1038/s41598-019-41852-4
Niechi, I. et al. Colon cancer cell invasion is promoted by protein kinase CK2 through increase of endothelin-converting enzyme-1c protein stability. Oncotarget 6, 42749–42760 (2015).
pubmed: 26543229
pmcid: 4767467
doi: 10.18632/oncotarget.5722
Siddiqui, Y. H. et al. CK2 abrogates the inhibitory effects of PRH/HHEX on prostate cancer cell migration and invasion and acts through PRH to control cell proliferation. Oncogenesis 6, e293 (2017).
pubmed: 28134934
pmcid: 5294245
doi: 10.1038/oncsis.2016.82
Zou, J. et al. Protein kinase CK2α is overexpressed in colorectal cancer and modulates cell proliferation and invasion via regulating EMT-related genes. J. Transl. Med. 9, 97 (2011).
pubmed: 21702981
pmcid: 3132712
doi: 10.1186/1479-5876-9-97
Filhol, O., Giacosa, S., Wallez, Y. & Cochet, C. Protein kinase CK2 in breast cancer: the CK2β regulatory subunit takes center stage in epithelial plasticity. Cell. Mol. Life Sci. 72, 3305–3322 (2015).
pubmed: 25990538
doi: 10.1007/s00018-015-1929-8
Gapany, M. et al. Association of elevated protein kinase CK2 activity with aggressive behavior of squamous cell carcinoma of the head and neck. Mol. Med. 1, 659–666 (1995).
pubmed: 8529132
pmcid: 2229971
doi: 10.1007/BF03401606
Pérez-Moreno, P. et al. Endothelin-converting enzyme-1c promotes stem cell traits and aggressiveness in colorectal cancer cells. Mol. Oncol. 14, 347–362 (2020).
pubmed: 31788944
doi: 10.1002/1878-0261.12609
Montenarh, M. Protein kinase CK2 and angiogenesis. Adv. Clin. Exp. Med. 23, 153–158 (2014).
pubmed: 24913104
doi: 10.17219/acem/37040
Mottet, D., Ruys, S. P. D., Demazy, C., Raes, M. & Michiels, C. Role for casein kinase 2 in the regulation of HIF-1 activity. Int. J. Cancer 117, 764–774 (2005).
pubmed: 15957168
doi: 10.1002/ijc.21268
Dixit, D., Ahmad, F., Ghildiyal, R., Joshi, S. D. & Sen, E. CK2 inhibition induced PDK4-AMPK axis regulates metabolic adaptation and survival responses in glioma. Exp. Cell Res. 344, 132–142 (2016).
pubmed: 27001465
doi: 10.1016/j.yexcr.2016.03.017
Silva-Pavez, E. & Tapia, J. C. Protein kinase CK2 in cancer energetics. Front. Oncol. 10, 893 (2020).
pubmed: 32626654
pmcid: 7315807
doi: 10.3389/fonc.2020.00893
Yang, K. M. & Kim, K. Protein kinase CK2 modulation of pyruvate kinase M isoforms augments the Warburg effect in cancer cells. J. Cell. Biochem. 119, 8501–8510 (2018).
pubmed: 30015359
doi: 10.1002/jcb.27078
Zhang, X. et al. Targeting protein kinase CK2 suppresses bladder cancer cell survival via the glucose metabolic pathway. Oncotarget 7, 87361–87372 (2016).
pubmed: 27888634
pmcid: 5349994
doi: 10.18632/oncotarget.13571
Zonta, F. et al. Contribution of the CK2 catalytic isoforms α and α′ to the glycolytic phenotype of tumor cells. Cells 10, 181 (2021).
pubmed: 33477590
pmcid: 7831337
doi: 10.3390/cells10010181
Orlandini, M. et al. Protein kinase CK2alpha’ is induced by serum as a delayed early gene and cooperates with Ha-ras in fibroblast transformation. J. Biol. Chem. 273, 21291–21297 (1998).
pubmed: 9694889
doi: 10.1074/jbc.273.33.21291
Deshiere, A. et al. Unbalanced expression of CK2 kinase subunits is sufficient to drive epithelial-to-mesenchymal transition by Snail1 induction. Oncogene 32, 1373–1383 (2013).
pubmed: 22562247
doi: 10.1038/onc.2012.165
Vilardell, J. et al. Under-expression of CK2β subunit in ccRCC represents a complementary biomarker of p-STAT3 Ser727 that correlates with patient survival. Oncotarget 9, 5736–5751 (2018).
pubmed: 29464030
doi: 10.18632/oncotarget.23422
Turowec, J. P., Vilk, G., Gabriel, M. & Litchfield, D. W. Characterizing the convergence of protein kinase CK2 and caspase-3 reveals isoform-specific phosphorylation of caspase-3 by CK2α′: implications for pathological roles of CK2 in promoting cancer cell survival. Oncotarget 4, 560–571 (2013).
pubmed: 23599180
pmcid: 3720604
doi: 10.18632/oncotarget.948
Di Maira, G. et al. Pharmacological inhibition of protein kinase CK2 reverts the multidrug resistance phenotype of a CEM cell line characterized by high CK2 level. Oncogene 26, 6915–6926 (2007).
pubmed: 17486073
doi: 10.1038/sj.onc.1210495
Di Maira, G. et al. Comparative analysis of CK2 expression and function in tumor cell lines displaying sensitivity vs. resistance to chemical induced apoptosis. Mol. Cell. Biochem. 316, 155–161 (2008).
pubmed: 18560764
doi: 10.1007/s11010-008-9813-6
Lettieri, A. et al. Protein kinase CK2 subunits differentially perturb the adhesion and migration of GN11 Cells: a model of immature migrating neurons. Int. J. Mol. Sci. 20, 5951 (2019).
Litchfield, D. W. et al. Functional specialization of CK2 isoforms and characterization of isoform-specific binding partners. Mol. Cell. Biochem. 227, 21–29 (2001).
pubmed: 11827170
doi: 10.1023/A:1013188101465
Villamañan, L. et al. Up-regulation of the alpha prime subunit of protein kinase CK2 as a marker of fast proliferation in GL261 cultured cells. Pathol. Oncol. Res. 25, 1659–1663 (2019).
pubmed: 30607803
doi: 10.1007/s12253-018-00567-z
Gray, G. K., McFarland, B. C., Rowse, A. L., Gibson, S. A. & Benveniste, E. N. Therapeutic CK2 inhibition attenuates diverse prosurvival signaling cascades and decreases cell viability in human breast cancer cells. Oncotarget 5, 6484–6496 (2014).
pubmed: 25153725
pmcid: 4171645
doi: 10.18632/oncotarget.2248
Silva, A. et al. Regulation of PTEN by CK2 and Notch1 in primary T-cell acute lymphoblastic leukemia: rationale for combined use of CK2- and gamma-secretase inhibitors. Haematologica 95, 674–678 (2010).
pubmed: 20015880
doi: 10.3324/haematol.2009.011999
Gomes, A. M. et al. Adult B-cell acute lymphoblastic leukemia cells display decreased PTEN activity and constitutive hyperactivation of PI3K/Akt pathway despite high PTEN protein levels. Haematologica 99, 1062–1068 (2014).
pubmed: 24561792
pmcid: 4040910
doi: 10.3324/haematol.2013.096438
Mishra, S. et al. Treatment of P190 Bcr/Abl lymphoblastic leukemia cells with inhibitors of the serine/threonine kinase CK2. Leukemia 21, 178–180 (2007).
pubmed: 17082777
doi: 10.1038/sj.leu.2404460
Kim, J. S. et al. Protein kinase CK2alpha as an unfavorable prognostic marker and novel therapeutic target in acute myeloid leukemia. Clin. Cancer Res. 13, 1019–1028 (2007).
pubmed: 17289898
doi: 10.1158/1078-0432.CCR-06-1602
Quotti Tubi, L. et al. Inhibition of protein kinase CK2 with the clinical-grade small ATP-competitive compound CX-4945 or by RNA interference unveils its role in acute myeloid leukemia cell survival, p53-dependent apoptosis and daunorubicin-induced cytotoxicity. J. Hematol. Oncol. 6, 78 (2013).
pubmed: 24283803
pmcid: 3852751
doi: 10.1186/1756-8722-6-78
Martins, L. R. et al. Targeting CK2 overexpression and hyperactivation as a novel therapeutic tool in chronic lymphocytic leukemia. Blood 116, 2724–2731 (2010).
pubmed: 20660292
doi: 10.1182/blood-2010-04-277947
Borgo, C. et al. Aberrant signalling by protein kinase CK2 in imatinib-resistant chronic myeloid leukaemia cells: biochemical evidence and therapeutic perspectives. Mol. Oncol. 7, 1103–1115 (2013).
pubmed: 24012109
pmcid: 5528438
doi: 10.1016/j.molonc.2013.08.006
Landesman-Bollag, E., Channavajhala, P. L., Cardiff, R. D. & Seldin, D. C. p53 deficiency and misexpression of protein kinase CK2alpha collaborate in the development of thymic lymphomas in mice. Oncogene 16, 2965–2974 (1998).
pubmed: 9662328
doi: 10.1038/sj.onc.1201854
Piazza, F. A. et al. Multiple myeloma cell survival relies on high activity of protein kinase CK2. Blood 108, 1698–1707 (2006).
pubmed: 16684960
doi: 10.1182/blood-2005-11-013672
Morotti, A. et al. Protein kinase CK2: a targetable BCR-ABL partner in philadelphia positive leukemias. Adv. Hematol. 2015, 612567 (2015).
pubmed: 26843864
pmcid: 4710905
doi: 10.1155/2015/612567
Piazza, F. et al. Protein kinase CK2 in hematologic malignancies: reliance on a pivotal cell survival regulator by oncogenic signaling pathways. Leukemia 26, 1174–1179 (2012).
pubmed: 22289987
doi: 10.1038/leu.2011.385
Piazza, F., Manni, S. & Semenzato, G. Novel players in multiple myeloma pathogenesis: role of protein kinases CK2 and GSK3. Leuk. Res. 37, 221–227 (2013).
pubmed: 23174190
doi: 10.1016/j.leukres.2012.10.016
Piazza, F. et al. New responsibilities for aged kinases in B-lymphomas. Hematol. Oncol. 38, 3–11 (2020).
pubmed: 31782972
doi: 10.1002/hon.2694
Agarwal, M., Nitta, R. T. & Li, G. Casein kinase 2: a novel player in glioblastoma therapy and cancer stem cells. J. Mol. Genet. Med. 8, 1000094 (2013).
Dubois, N. et al. Constitutive activation of casein kinase 2 in glioblastomas: absence of class restriction and broad therapeutic potential. Int. J. Oncol. 48, 2445–2452 (2016).
pubmed: 27098015
doi: 10.3892/ijo.2016.3490
Ferrer-Font, L. et al. Targeting protein kinase CK2: evaluating CX-4945 potential for GL261 glioblastoma therapy in immunocompetent mice. Pharmaceuticals 10, 24 (2017).
Rowse, A. L. et al. Protein kinase CK2 is important for the function of glioblastoma brain tumor initiating cells. J. Neurooncol. 132, 219–229 (2017).
pubmed: 28181105
pmcid: 5492387
doi: 10.1007/s11060-017-2378-z
Zheng, Y. et al. Targeting protein kinase CK2 suppresses prosurvival signaling pathways and growth of glioblastoma. Clin. Cancer Res. 19, 6484–6494 (2013).
pubmed: 24036851
pmcid: 3932633
doi: 10.1158/1078-0432.CCR-13-0265
Nitta, R. T. et al. Casein kinase 2 inhibition sensitizes medulloblastoma to temozolomide. Oncogene 38, 6867–6879 (2019).
pubmed: 31406250
pmcid: 6800621
doi: 10.1038/s41388-019-0927-y
Purzner, T. et al. Developmental phosphoproteomics identifies the kinase CK2 as a driver of Hedgehog signaling and a therapeutic target in medulloblastoma. Sci. Signal. 11, eaau5147 (2018).
Götz, C., Kartarius, S., Schetting, S. & Montenarh, M. Immunologically defined subclasses of the protein kinase CK2 beta-subunit in prostate carcinoma cell lines. Mol. Cell. Biochem. 274, 181–187 (2005).
pubmed: 16335537
doi: 10.1007/s11010-005-2950-2
Laramas, M. et al. Nuclear localization of protein kinase CK2 catalytic subunit (CK2alpha) is associated with poor prognostic factors in human prostate cancer. Eur. J. Cancer 43, 928–934 (2007).
pubmed: 17267203
doi: 10.1016/j.ejca.2006.11.021
Yenice, S. et al. Nuclear casein kinase 2 (CK-2) activity in human normal, benign hyperplastic, and cancerous prostate. Prostate 24, 11–16 (1994).
pubmed: 7507238
doi: 10.1002/pros.2990240105
Chatterjee, M. et al. Diagnostic markers of ovarian cancer by high-throughput antigen cloning and detection on arrays. Cancer Res. 66, 1181–1190 (2006).
pubmed: 16424057
pmcid: 2546578
doi: 10.1158/0008-5472.CAN-04-2962
Chen, L.-Y. et al. TET1 reprograms the epithelial ovarian cancer epigenome and reveals casein kinase 2α as a therapeutic target. J. Pathol. 248, 363–376 (2019).
pubmed: 30883733
pmcid: 6579655
Kulbe, H. et al. Integrated transcriptomic and proteomic analysis identifies protein kinase CK2 as a key signaling node in an inflammatory cytokine network in ovarian cancer cells. Oncotarget 7, 15648–15661 (2016).
pubmed: 26871292
pmcid: 4941267
doi: 10.18632/oncotarget.7255
Wong, A. S., Kim, S. O., Leung, P. C., Auersperg, N. & Pelech, S. L. Profiling of protein kinases in the neoplastic transformation of human ovarian surface epithelium. Gynecol. Oncol. 82, 305–311 (2001).
pubmed: 11531284
doi: 10.1006/gyno.2001.6280
Bae, J. S. et al. CK2α/CSNK2A1 phosphorylates SIRT6 and is involved in the progression of breast carcinoma and predicts shorter survival of diagnosed patients. Am. J. Pathol. 186, 3297–3315 (2016).
pubmed: 27746184
doi: 10.1016/j.ajpath.2016.08.007
Das, N., Datta, N., Chatterjee, U. & Ghosh, M. K. Estrogen receptor alpha transcriptionally activates casein kinase 2 alpha: A pivotal regulator of promyelocytic leukaemia protein (PML) and AKT in oncogenesis. Cell. Signal. 28, 675–687 (2016).
pubmed: 27012497
doi: 10.1016/j.cellsig.2016.03.007
Giusiano, S. et al. Protein kinase CK2α subunit over-expression correlates with metastatic risk in breast carcinomas: quantitative immunohistochemistry in tissue microarrays. Eur. J. Cancer 47, 792–801 (2011).
pubmed: 21194925
doi: 10.1016/j.ejca.2010.11.028
Landesman-Bollag, E. et al. Protein kinase CK2 in mammary gland tumorigenesis. Oncogene 20, 3247–3257 (2001).
pubmed: 11423974
doi: 10.1038/sj.onc.1204411
Williams, M. D., Nguyen, T., Carriere, P. P., Tilghman, S. L. & Williams, C. Protein kinase CK2 expression predicts relapse survival in ERα dependent breast cancer, and modulates ERα expression in vitro. Int. J. Environ. Res. Public Health 13, 36 (2016).
Daya-Makin, M. et al. Activation of a tumor-associated protein kinase (p40TAK) and casein kinase 2 in human squamous cell carcinomas and adenocarcinomas of the lung. Cancer Res. 54, 2262–2268 (1994).
pubmed: 7513612
Faust, R. A. et al. Elevated protein kinase CK2 activity in chromatin of head and neck tumors: association with malignant transformation. Cancer Lett. 101, 31–35 (1996).
pubmed: 8625279
doi: 10.1016/0304-3835(96)04110-9
O-charoenrat, P. et al. Casein kinase II alpha subunit and C1-inhibitor are independent predictors of outcome in patients with squamous cell carcinoma of the lung. Clin. Cancer Res. 10, 5792–5803 (2004).
pubmed: 15355908
doi: 10.1158/1078-0432.CCR-03-0317
Wang, Z. et al. Gene expression levels of CSNK1A1 and AAC-11, but not NME1, in tumor tissues as prognostic factors in NSCLC patients. Med. Sci. Monit. 16, CR357–364 (2010).
pubmed: 20671611
Yaylim, I. & Isbir, T. Enhanced casein kinase II (CK II) activity in human lung tumours. Anticancer Res. 22, 215–218 (2002).
pubmed: 12017291
Mitev, V., Miteva, L., Botev, I. & Houdebine, L. M. Enhanced casein kinase II activity in metastatic melanoma. J. Dermatol. Sci. 8, 45–49 (1994).
pubmed: 7947492
doi: 10.1016/0923-1811(94)90320-4
Zhou, B., Ritt, D. A., Morrison, D. K., Der, C. J. & Cox, A. D. Protein kinase CK2α maintains extracellular signal-regulated kinase (ERK) activity in a CK2α kinase-independent manner to promote resistance to inhibitors of RAF and MEK but not ERK in BRAF mutant melanoma. J. Biol. Chem. 291, 17804–17815 (2016).
pubmed: 27226552
pmcid: 5016172
doi: 10.1074/jbc.M115.712885
Rabjerg, M. et al. Nuclear localization of the CK2α-subunit correlates with poor prognosis in clear cell renal cell carcinoma. Oncotarget 8, 1613–1627 (2017).
pubmed: 27906674
doi: 10.18632/oncotarget.13693
Roelants, C. et al. in Protein Kinase CK2 Cellular Function in Normal and Disease States (eds Ahmed, K., Issinger, O.-G. & Szyszka, R.) 241–257 (Springer International Publishing, 2015).
Stalter, G. et al. Asymmetric expression of protein kinase CK2 subunits in human kidney tumors. Biochem. Biophys. Res. Commun. 202, 141–147 (1994).
pubmed: 8037705
doi: 10.1006/bbrc.1994.1904
Jia, Z.-M. et al. p21 and CK2 interaction-mediated HDAC2 phosphorylation modulates KLF4 acetylation to regulate bladder cancer cell proliferation. Tumour Biol. 37, 8293–8304 (2016).
pubmed: 26729194
doi: 10.1007/s13277-015-4618-1
Shimada, K., Anai, S., Marco, D. A., Fujimoto, K. & Konishi, N. Cyclooxygenase 2-dependent and independent activation of Akt through casein kinase 2α contributes to human bladder cancer cell survival. BMC Urol. 11, 8 (2011).
pubmed: 21592330
pmcid: 3111585
doi: 10.1186/1471-2490-11-8
Ortega, C. E., Seidner, Y. & Dominguez, I. Mining CK2 in cancer. PLoS ONE 9, e115609 (2014).
pubmed: 25541719
pmcid: 4277308
doi: 10.1371/journal.pone.0115609
Venkat, S. et al. Alternative polyadenylation drives oncogenic gene expression in pancreatic ductal adenocarcinoma. Genome Res. 30, 347–360 (2020).
pubmed: 32029502
pmcid: 7111527
doi: 10.1101/gr.257550.119
Zhou, F., Xu, J., Ding, G. & Cao, L. Overexpressions of CK2β and XIAP are associated with poor prognosis of patients with cholangiocarcinoma. Pathol. Oncol. Res. 20, 73–79 (2014).
pubmed: 23828693
doi: 10.1007/s12253-013-9660-y
Ko, H. et al. Protein kinase casein kinase 2-mediated upregulation of N-cadherin confers anoikis resistance on esophageal carcinoma cells. Mol. Cancer Res. 10, 1032–1038 (2012).
pubmed: 22767590
doi: 10.1158/1541-7786.MCR-12-0261
Yoo, J.-Y. et al. Nuclear hormone receptor corepressor promotes esophageal cancer cell invasion by transcriptional repression of interferon-γ-inducible protein 10 in a casein kinase 2-dependent manner. Mol. Biol. Cell 23, 2943–2954 (2012).
pubmed: 22675025
pmcid: 3408420
doi: 10.1091/mbc.e11-11-0947
Bae, J. S. et al. CK2α phosphorylates DBC1 and is involved in the progression of gastric carcinoma and predicts poor survival of gastric carcinoma patients. Int. J. Cancer 136, 797–809 (2015).
pubmed: 24962073
doi: 10.1002/ijc.29043
Jiang, C. et al. CSNK2A1 promotes gastric cancer invasion through the PI3K-Akt-mTOR signaling pathway. Cancer Manag. Res. 11, 10135–10143 (2019).
pubmed: 31819646
pmcid: 6897054
doi: 10.2147/CMAR.S222620
Lee, Y. S., Lee, D. Y., Yu, D. Y., Kim, S. & Lee, Y. C. Helicobacter pylori induces cell migration and invasion through casein kinase 2 in gastric epithelial cells. Helicobacter 19, 465–475 (2014).
pubmed: 25052887
doi: 10.1111/hel.12144
Lin, K.-Y. et al. Overexpression of nuclear protein kinase CK2 Beta subunit and prognosis in human gastric carcinoma. Ann. Surg. Oncol. 17, 1695–1702 (2010).
pubmed: 20087779
doi: 10.1245/s10434-010-0911-9
Khan, D. H. et al. Protein kinase CK2 regulates the dimerization of histone deacetylase 1 (HDAC1) and HDAC2 during mitosis. J. Biol. Chem. 288, 16518–16528 (2013).
pubmed: 23612983
pmcid: 3675587
doi: 10.1074/jbc.M112.440446
Kim, H. S. et al. Oncogenic potential of CK2α and its regulatory role in EGF-induced HDAC2 expression in human liver cancer. FEBS J. 281, 851–861 (2014).
pubmed: 24616922
doi: 10.1111/febs.12652
Yu, W. et al. The phosphorylation of SEPT2 on Ser218 by casein kinase 2 is important to hepatoma carcinoma cell proliferation. Mol. Cell. Biochem. 325, 61–67 (2009).
pubmed: 19165576
doi: 10.1007/s11010-008-0020-2
Zhang, H.-X. et al. Protein kinase CK2α catalytic subunit is overexpressed and serves as an unfavorable prognostic marker in primary hepatocellular carcinoma. Oncotarget 6, 34800–34817 (2015).
pubmed: 26430962
pmcid: 4741491
doi: 10.18632/oncotarget.5470
Zhang, S. et al. CK2α, over-expressed in human malignant pleural mesothelioma, regulates the Hedgehog signaling pathway in mesothelioma cells. J. Exp. Clin. Cancer Res. 33, 93 (2014).
pubmed: 25422081
pmcid: 4254219
Massimi, P., Pim, D., Kühne, C. & Banks, L. Regulation of the human papillomavirus oncoproteins by differential phosphorylation. Mol. Cell. Biochem. 227, 137–144 (2001).
pubmed: 11827165
doi: 10.1023/A:1013145814186
Sang, B. C. & Barbosa, M. S. Single amino acid substitutions in ‘low-risk’ human papillomavirus (HPV) type 6 E7 protein enhance features characteristic of the ‘high-risk’ HPV E7 oncoproteins. Proc. Natl Acad. Sci. USA 89, 8063–8067 (1992).
pubmed: 1325643
doi: 10.1073/pnas.89.17.8063
Tugizov, S. et al. Inhibition of human papillomavirus type 16 E7 phosphorylation by the S100 MRP-8/14 protein complex. J. Virol. 79, 1099–1112 (2005).
pubmed: 15613338
pmcid: 538578
doi: 10.1128/JVI.79.2.1099-1112.2005
Rydell, E. L., Axelsson, K. L., Olofsson, J. & Hellem, S. Protein kinase activities in neoplastic squamous epithelia and normal epithelia from the upper aero-digestive tract. Cancer Biochem. Biophys. 11, 187–194 (1990).
pubmed: 2268849
Chua, M. M. J. et al. CK2 in cancer: cellular and biochemical mechanisms and potential therapeutic target. Pharmaceuticals 10, 18 (2017).
Duncan, J. S. & Litchfield, D. W. Too much of a good thing: the role of protein kinase CK2 in tumorigenesis and prospects for therapeutic inhibition of CK2. Biochim. Biophys. Acta 1784, 33–47 (2008).
pubmed: 17931986
doi: 10.1016/j.bbapap.2007.08.017
Guerra, B. & Issinger, O.-G. Protein kinase CK2 in human diseases. Curr. Med. Chem. 15, 1870–1886 (2008).
pubmed: 18691045
doi: 10.2174/092986708785132933
Lian, H. et al. Protein kinase CK2, a potential therapeutic target in carcinoma management. Asian Pac. J. Cancer Prev. 20, 23–32 (2019).
pubmed: 30677865
pmcid: 6485562
doi: 10.31557/APJCP.2019.20.1.23
Chua, M. M. J., Lee, M. & Dominguez, I. Cancer-type dependent expression of CK2 transcripts. PLoS ONE 12, e0188854 (2017).
pubmed: 29206231
pmcid: 5714396
doi: 10.1371/journal.pone.0188854
Tawfic, S. et al. Protein kinase CK2 signal in neoplasia. Histol. Histopathol. 16, 573–582 (2001).
pubmed: 11332713
Luo, J., Solimini, N. L. & Elledge, S. J. Principles of cancer therapy: oncogene and non-oncogene addiction. Cell 136, 823–837 (2009).
pubmed: 19269363
pmcid: 2894612
doi: 10.1016/j.cell.2009.02.024
Lashuel, H. A., Overk, C. R., Oueslati, A. & Masliah, E. The many faces of α-synuclein: from structure and toxicity to therapeutic target. Nat. Rev. Neurosci. 14, 38–48 (2013).
pubmed: 23254192
pmcid: 4295774
doi: 10.1038/nrn3406
Oueslati, A. Implication of alpha-synuclein phosphorylation at S129 in synucleinopathies: what have we learned in the last decade? J. Parkinsons Dis. 6, 39–51 (2016).
Okochi, M. et al. Constitutive phosphorylation of the Parkinson’s disease associated alpha-synuclein. J. Biol. Chem. 275, 390–397 (2000).
pubmed: 10617630
doi: 10.1074/jbc.275.1.390
Ishii, A. et al. Casein kinase 2 is the major enzyme in brain that phosphorylates Ser129 of human alpha-synuclein: Implication for alpha-synucleinopathies. FEBS Lett. 581, 4711–4717 (2007).
pubmed: 17868672
doi: 10.1016/j.febslet.2007.08.067
Inglis, K. J. et al. Polo-like kinase 2 (PLK2) phosphorylates alpha-synuclein at serine 129 in central nervous system. J. Biol. Chem. 284, 2598–2602 (2009).
pubmed: 19004816
pmcid: 2631975
doi: 10.1074/jbc.C800206200
Mbefo, M. K. et al. Phosphorylation of synucleins by members of the Polo-like kinase family. J. Biol. Chem. 285, 2807–2822 (2010).
pubmed: 19889641
doi: 10.1074/jbc.M109.081950
Salvi, M., Sarno, S., Cesaro, L., Nakamura, H. & Pinna, L. A. Extraordinary pleiotropy of protein kinase CK2 revealed by weblogo phosphoproteome analysis. Biochim. Biophys. Acta 1793, 847–859 (2009).
pubmed: 19339213
doi: 10.1016/j.bbamcr.2009.01.013
Salvi, M. et al. Investigation on PLK2 and PLK3 substrate recognition. Biochim. Biophys. Acta 1824, 1366–1373 (2012).
pubmed: 22828320
doi: 10.1016/j.bbapap.2012.07.003
Cozza, G. & Salvi, M. The acidophilic kinases PLK2 and PLK3: structure, substrate targeting and inhibition. Curr. Protein Pept. Sci. 19, 728–745 (2018).
pubmed: 29366414
doi: 10.2174/1389203719666180124095405
Salvi, M. et al. Tools to discriminate between targets of CK2 vs PLK2/PLK3 acidophilic kinases. BioTechniques 52, 1–5 (2012).
Bergeron, M. et al. In vivo modulation of polo-like kinases supports a key role for PLK2 in Ser129 α-synuclein phosphorylation in mouse brain. Neuroscience 256, 72–82 (2014).
pubmed: 24128992
doi: 10.1016/j.neuroscience.2013.09.061
O’Brien, R. J. & Wong, P. C. Amyloid precursor protein processing and Alzheimer’s disease. Annu. Rev. Neurosci. 34, 185–204 (2011).
pubmed: 21456963
pmcid: 3174086
doi: 10.1146/annurev-neuro-061010-113613
Zhang, Q. et al. CK2 phosphorylating I2PP2A/SET mediates tau pathology and cognitive impairment. Front. Mol. Neurosci. 11, 146 (2018).
Rosenberger, A. F. N. et al. Increased occurrence of protein kinase CK2 in astrocytes in Alzheimer’s disease pathology. J. Neuroinflammation 13, 4 (2016).
pubmed: 26732432
pmcid: 4702323
doi: 10.1186/s12974-015-0470-x
Chauhan, A., Chauhan, V. P., Murakami, N., Brockerhoff, H. & Wisniewski, H. M. Amyloid beta-protein stimulates casein kinase I and casein kinase II activities. Brain Res. 629, 47–52 (1993).
pubmed: 8287280
doi: 10.1016/0006-8993(93)90479-7
Walter, J. et al. The Alzheimer’s disease-associated presenilins are differentially phosphorylated proteins located predominantly within the endoplasmic reticulum. Mol. Med. 2, 673–691 (1996).
pubmed: 8972483
pmcid: 2230134
doi: 10.1007/BF03401652
Sannerud, R. et al. Restricted location of PSEN2/γ-secretase determines substrate specificity and generates an intracellular Aβ pool. Cell 166, 193–208 (2016).
pubmed: 27293189
pmcid: 7439524
doi: 10.1016/j.cell.2016.05.020
Lenzken, S. C. et al. Recruitment of casein kinase 2 is involved in AbetaPP processing following cholinergic stimulation. J. Alzheimers Dis. 20, 1133–1141 (2010).
pubmed: 20413902
doi: 10.3233/JAD-2010-090232
Pimenova, A. A., Thathiah, A., Strooper, B. D. & Tesseur, I. Regulation of amyloid precursor protein processing by serotonin signaling. PLOS ONE 9, e87014 (2014).
pubmed: 24466315
pmcid: 3897773
doi: 10.1371/journal.pone.0087014
Kanaan, N. M. et al. Axonal degeneration in Alzheimer’s disease: when signaling abnormalities meet the axonal transport system. Exp. Neurol. 246, 44–53 (2013).
pubmed: 22721767
doi: 10.1016/j.expneurol.2012.06.003
Pigino, G. et al. Disruption of fast axonal transport is a pathogenic mechanism for intraneuronal amyloid beta. Proc. Natl Acad. Sci. USA 106, 5907–5912 (2009).
pubmed: 19321417
doi: 10.1073/pnas.0901229106
Tabrizi, S. J., Flower, M. D., Ross, C. A. & Wild, E. J. Huntington disease: new insights into molecular pathogenesis and therapeutic opportunities. Nat. Rev. Neurol. 16, 529–546 (2020).
pubmed: 32796930
doi: 10.1038/s41582-020-0389-4
Fan, M. M. Y., Zhang, H., Hayden, M. R., Pelech, S. L. & Raymond, L. A. Protective up-regulation of CK2 by mutant huntingtin in cells co-expressing NMDA receptors. J. Neurochem. 104, 790–805 (2008).
pubmed: 17971125
Atwal, R. S. et al. Kinase inhibitors modulate huntingtin cell localization and toxicity. Nat. Chem. Biol. 7, 453–460 (2011).
pubmed: 21623356
doi: 10.1038/nchembio.582
Bowie, L. E. et al. N6-Furfuryladenine is protective in Huntington’s disease models by signaling huntingtin phosphorylation. Proc. Natl Acad. Sci. USA 115, E7081–E7090 (2018).
pubmed: 29987005
doi: 10.1073/pnas.1801772115
Tao, R.-S., Fei, E.-K., Ying, Z., Wang, H.-F. & Wang, G.-H. Casein kinase 2 interacts with and phosphorylates ataxin-3. Neurosci. Bull. 24, 271–277 (2008).
pubmed: 18839019
pmcid: 5552532
doi: 10.1007/s12264-008-0605-5
Mueller, T. et al. CK2-dependent phosphorylation determines cellular localization and stability of ataxin-3. Hum. Mol. Genet. 18, 3334–3343 (2009).
pubmed: 19542537
doi: 10.1093/hmg/ddp274
Pastori, V. et al. CK2 and GSK3 phosphorylation on S29 controls wild-type ATXN3 nuclear uptake. Biochim. Biophys. Acta 1802, 583–592 (2010).
pubmed: 20347968
doi: 10.1016/j.bbadis.2010.03.007
Shenouda, M., Zhang, A. B., Weichert, A. & Robertson, J. Mechanisms associated with TDP-43 neurotoxicity in ALS/FTLD. Adv. Neurobiol. 20, 239–263 (2018).
pubmed: 29916022
doi: 10.1007/978-3-319-89689-2_9
Buratti, E. TDP-43 post-translational modifications in health and disease. Expert Opin. Ther. Targets 22, 279–293 (2018).
pubmed: 29431050
doi: 10.1080/14728222.2018.1439923
Li, H.-Y., Yeh, P.-A., Chiu, H.-C., Tang, C.-Y. & Tu, B. P. Hyperphosphorylation as a defense mechanism to reduce TDP-43 aggregation. PLoS ONE 6, e23075 (2011).
pubmed: 21850253
pmcid: 3151276
doi: 10.1371/journal.pone.0023075
Hasegawa, M. et al. Phosphorylated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Ann. Neurol. 64, 60–70 (2008).
pubmed: 18546284
pmcid: 2674108
doi: 10.1002/ana.21425
Iguchi, Y. et al. Oxidative stress induced by glutathione depletion reproduces pathological modifications of TDP-43 linked to TDP-43 proteinopathies. Neurobiol. Dis. 45, 862–870 (2012).
pubmed: 22198567
doi: 10.1016/j.nbd.2011.12.002
Lee, A. et al. Casein kinase II phosphorylation of cyclin F at serine 621 regulates the Lys48-ubiquitylation E3 ligase activity of the SCF(cyclin F) complex. Open Biol. 7, 170058 (2017).
Ottaviani, D. et al. Protein kinase CK2 modulates HSJ1 function through phosphorylation of the UIM2 domain. Hum. Mol. Genet. 26, 611–623 (2017).
pubmed: 28031292
Yadikar, H. et al. Screening of tau protein kinase inhibitors in a tauopathy-relevant cell-based model of tau hyperphosphorylation and oligomerization. PLoS ONE 15, e0224952 (2020).
pubmed: 32692785
pmcid: 7373298
doi: 10.1371/journal.pone.0224952
Firzlaff, J. M., Galloway, D. A., Eisenman, R. N. & Lüscher, B. The E7 protein of human papillomavirus type 16 is phosphorylated by casein kinase II. N. Biol. 1, 44–53 (1989).
Meggio, F., D’Agostino, D. M., Ciminale, V., Chieco-Bianchi, L. & Pinna, L. A. Phosphorylation of HIV-1 Rev protein: implication of protein kinase CK2 and pro-directed kinases. Biochem. Biophys. Res. Commun. 226, 547–554 (1996).
pubmed: 8806671
doi: 10.1006/bbrc.1996.1392
Dal Pero, F. et al. Heterogeneity of CK2 phosphorylation sites in the NS5A protein of different hepatitis C virus genotypes. J. Hepatol. 47, 768–776 (2007).
pubmed: 17923166
doi: 10.1016/j.jhep.2007.07.020
Schwartz, E. I., Intine, R. V. & Maraia, R. J. CK2 is responsible for phosphorylation of human La protein serine-366 and can modulate rpL37 5′-terminal oligopyrimidine mRNA metabolism. Mol. Cell. Biol. 24, 9580–9591 (2004).
pubmed: 15485924
pmcid: 522270
doi: 10.1128/MCB.24.21.9580-9591.2004
Davis, K. A., Morelli, M. & Patton, J. T. Rotavirus NSP1 requires casein kinase II-mediated phosphorylation for hijacking of cullin-RING ligases. mBio 8, e01213-17 (2017).
Yoon, J.-J., Lee, Y.-T., Chu, H., Son, S. & Kim, M. Phosphorylation of the nucleocapsid protein of Hantaan virus by casein kinase II. J. Microbiol. 53, 343–347 (2015).
pubmed: 25935306
doi: 10.1007/s12275-015-5095-3
Bajorek, M. et al. The Thr205 phosphorylation site within respiratory syncytial virus matrix (M) protein modulates M oligomerization and virus production. J. Virol. 88, 6380–6393 (2014).
pubmed: 24672034
pmcid: 4093874
doi: 10.1128/JVI.03856-13
Basta, H. A., Bacot-Davis, V. R., Ciomperlik, J. J. & Palmenberg, A. C. Encephalomyocarditis virus leader is phosphorylated by CK2 and syk as a requirement for subsequent phosphorylation of cellular nucleoporins. J. Virol. 88, 2219–2226 (2014).
pubmed: 24335301
pmcid: 3911527
doi: 10.1128/JVI.03150-13
Majerciak, V. et al. Stability of structured Kaposi’s sarcoma-associated herpesvirus ORF57 protein is regulated by protein phosphorylation and homodimerization. J. Virol. 89, 3256–3274 (2015).
pubmed: 25568207
pmcid: 4337553
doi: 10.1128/JVI.03721-14
Du, M. et al. Casein kinase II controls TBK1/IRF3 activation in IFN response against viral infection. J. Immunol. 194, 4477–4488 (2015).
pubmed: 25810395
doi: 10.4049/jimmunol.1402777
Chen, I.-Y. et al. Upregulation of the chemokine (C-C motif) ligand 2 via a severe acute respiratory syndrome coronavirus spike-ACE2 signaling pathway. J. Virol. 84, 7703–7712 (2010).
pubmed: 20484496
pmcid: 2897593
doi: 10.1128/JVI.02560-09
Gordon, D. E. et al. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature 583, 459–468 (2020).
Bouhaddou, M. et al. The global phosphorylation landscape of SARS-CoV-2 infection. Cell 182, 685–712 (2020).
Mak, E. Taiwan’s Senhwa advancing CK2 candidate against moderate COVID-19. https://www.bioworld.com/articles/496463-taiwans-senhwa-advancing-ck2-candidate-against-moderate-covid-19?v=preview .
Kweon, S.-M. et al. Synergistic activation of NF-kappaB by nontypeable H. influenzae and S. pneumoniae is mediated by CK2, IKKbeta-IkappaBalpha, and p38 MAPK. Biochem. Biophys. Res. Commun. 351, 368–375 (2006).
pubmed: 17064662
pmcid: 3345030
doi: 10.1016/j.bbrc.2006.10.052
Källström, H., Islam, M. S., Berggren, P. O. & Jonsson, A. B. Cell signaling by the type IV pili of pathogenic Neisseria. J. Biol. Chem. 273, 21777–21782 (1998).
pubmed: 9705315
doi: 10.1074/jbc.273.34.21777
Chong, R. et al. Regulatory mimicry in Listeria monocytogenes actin-based motility. Cell Host Microbe 6, 268–278 (2009).
pubmed: 19748468
pmcid: 2752869
doi: 10.1016/j.chom.2009.08.006
Chiang, L. Y. et al. Candida albicans protein kinase CK2 governs virulence during oropharyngeal candidiasis. Cell. Microbiol. 9, 233–245 (2007).
pubmed: 16939537
doi: 10.1111/j.1462-5822.2006.00784.x
ole-MoiYoi, O. K. Casein kinase II in theileriosis. Science 267, 834–836 (1995).
pubmed: 7846527
doi: 10.1126/science.7846527
Vieira, L. L., Sacerdoti-Sierra, N. & Jaffe, C. L. Effect of pH and temperature on protein kinase release by Leishmania donovani. Int. J. Parasitol. 32, 1085–1093 (2002).
pubmed: 12117491
doi: 10.1016/S0020-7519(02)00067-X
Zylbersztejn, A. M. B. et al. CK2 secreted by Leishmania braziliensis mediates macrophage association invasion: a comparative study between virulent and avirulent promastigotes. Biomed. Res. Int. 2015, 167323 (2015).
pubmed: 26120579
pmcid: 4450227
doi: 10.1155/2015/167323
Dutra, P. M. L., Vieira, D. P., Meyer-Fernandes, J. R., Silva-Neto, M. A. C. & Lopes, A. H. Stimulation of Leishmania tropica protein kinase CK2 activities by platelet-activating factor (PAF). Acta Trop. 111, 247–254 (2009).
pubmed: 19433049
doi: 10.1016/j.actatropica.2009.05.002
Augustine, S. A. J. et al. Molecular cloning of a Trypanosoma cruzi cell surface casein kinase II substrate, Tc-1, involved in cellular infection. Infect. Immun. 74, 3922–3929 (2006).
pubmed: 16790765
pmcid: 1489715
doi: 10.1128/IAI.00045-06
de Abreu da Silva, I. C. et al. CK2 phosphorylation of Schistosoma mansoni HMGB1 protein regulates its cellular traffic and secretion but not its DNA transactions. PLoS ONE 6, e23572 (2011).
pubmed: 21887276
pmcid: 3160966
doi: 10.1371/journal.pone.0023572
Delorme, V., Cayla, X., Faure, G., Garcia, A. & Tardieux, I. Actin dynamics is controlled by a casein kinase II and phosphatase 2C interplay on Toxoplasma gondii Toxofilin. Mol. Biol. Cell 14, 1900–1912 (2003).
pubmed: 12802063
pmcid: 165085
doi: 10.1091/mbc.e02-08-0462
Holland, Z., Prudent, R., Reiser, J.-B., Cochet, C. & Doerig, C. Functional analysis of protein kinase CK2 of the human malaria parasite Plasmodium falciparum. Eukaryot. Cell 8, 388–397 (2009).
pubmed: 19114502
doi: 10.1128/EC.00334-08
Hora, R., Bridges, D. J., Craig, A. & Sharma, A. Erythrocytic casein kinase II regulates cytoadherence of Plasmodium falciparum-infected red blood cells. J. Biol. Chem. 284, 6260–6269 (2009).
pubmed: 19131328
pmcid: 2649111
doi: 10.1074/jbc.M809756200
Kramerov, A. A. et al. Inhibition of protein kinase CK2 suppresses angiogenesis and hematopoietic stem cell recruitment to retinal neovascularization sites. Mol. Cell. Biochem. 316, 177–186 (2008).
pubmed: 18612802
pmcid: 2913688
doi: 10.1007/s11010-008-9831-4
Ljubimov, A. V. et al. Involvement of protein kinase CK2 in angiogenesis and retinal neovascularization. Invest. Ophthalmol. Vis. Sci. 45, 4583–4591 (2004).
pubmed: 15557471
pmcid: 2917328
doi: 10.1167/iovs.04-0686
Morooka, S. et al. Identification of a dual inhibitor of SRPK1 and CK2 that attenuates pathological angiogenesis of macular degeneration in mice. Mol. Pharmacol. 88, 316–325 (2015).
pubmed: 25993998
doi: 10.1124/mol.114.097345
Cen, L.-P. et al. Casein kinase-II inhibition promotes retinal ganglion cell survival and axonal regeneration. Exp. Eye Res. 177, 153–159 (2018).
pubmed: 30118655
doi: 10.1016/j.exer.2018.08.010
Trojan, P. et al. Light-dependent CK2-mediated phosphorylation of centrins regulates complex formation with visual G-protein. Biochim. Biophys. Acta 1783, 1248–1260 (2008).
pubmed: 18269917
doi: 10.1016/j.bbamcr.2008.01.006
Carneiro, A. C. D., Fragel-Madeira, L., Silva-Neto, M. A. & Linden, R. A role for CK2 upon interkinetic nuclear migration in the cell cycle of retinal progenitor cells. Dev. Neurobiol. 68, 620–631 (2008).
pubmed: 18278803
doi: 10.1002/dneu.20613
Burgel, P.-R. et al. Future trends in cystic fibrosis demography in 34 European countries. Eur. Respir. J. 46, 133–141 (2015).
pubmed: 25792639
doi: 10.1183/09031936.00196314
Elborn, J. S. Cystic fibrosis. Lancet 388, 2519–2531 (2016).
pubmed: 27140670
doi: 10.1016/S0140-6736(16)00576-6
Saint-Criq, V. & Gray, M. A. Role of CFTR in epithelial physiology. Cell. Mol. Life Sci. 74, 93–115 (2017).
pubmed: 27714410
doi: 10.1007/s00018-016-2391-y
Heda, G. D., Tanwani, M. & Marino, C. R. The Delta F508 mutation shortens the biochemical half-life of plasma membrane CFTR in polarized epithelial cells. Am. Am. J. Physiol., Cell Physiol. 280, C166–174 (2001).
doi: 10.1152/ajpcell.2001.280.1.C166
McClure, M. L., Barnes, S., Brodsky, J. L. & Sorscher, E. J. Trafficking and function of the cystic fibrosis transmembrane conductance regulator: a complex network of posttranslational modifications. Am. J. Physiol. Lung Cell Mol. Physiol. 311, L719–L733 (2016).
pubmed: 27474090
pmcid: 5142128
doi: 10.1152/ajplung.00431.2015
Pankow, S., Bamberger, C. & Yates, J. R. A posttranslational modification code for CFTR maturation is altered in cystic fibrosis. Sci Signal 12, (2019).
Treharne, K. J. et al. Inhibition of protein kinase CK2 closes the CFTR Cl channel, but has no effect on the cystic fibrosis mutant deltaF508-CFTR. Cell. Physiol. Biochem. 24, 347–360 (2009).
pubmed: 19910675
pmcid: 2795324
doi: 10.1159/000257427
Tosco, A. et al. A novel treatment of cystic fibrosis acting on-target: cysteamine plus epigallocatechin gallate for the autophagy-dependent rescue of class II-mutated CFTR. Cell Death Differ. 23, 1380–1393 (2016).
pubmed: 27035618
pmcid: 4947669
doi: 10.1038/cdd.2016.22
Pagano, M. A. et al. Modulation of protein kinase CK2 activity by fragments of CFTR encompassing F508 may reflect functional links with cystic fibrosis pathogenesis. Biochemistry 47, 7925–7936 (2008).
pubmed: 18597485
pmcid: 2774623
doi: 10.1021/bi800316z
Venerando, A. et al. Understanding protein kinase CK2 mis-regulation upon F508del CFTR expression. Naunyn Schmiedebergs Arch. Pharmacol. 384, 473–488 (2011).
pubmed: 21607646
pmcid: 3208816
doi: 10.1007/s00210-011-0650-x
D’Amore, C. et al. Deciphering the role of protein kinase CK2 in the maturation/stability of F508del-CFTR. Biochim Biophys Acta Mol Basis Dis 165611 (2019), https://doi.org/10.1016/j.bbadis.2019.165611 .
Ibrahim, S. H. et al. CK2 is a key regulator of SLC4A2-mediated Cl−/HCO3− exchange in human airway epithelia. Pflug. Arch. 469, 1073–1091 (2017).
doi: 10.1007/s00424-017-1981-3
Pinto, M. C. et al. Regulation of TMEM16A by CK2 and Its Role in Cellular Proliferation. Cells 9, (2020).
Gao, Z. et al. An AUTS2-Polycomb complex activates gene expression in the CNS. Nature 516, 349–354 (2014).
pubmed: 25519132
pmcid: 4323097
doi: 10.1038/nature13921
Bartley, C. M. et al. Mammalian FMRP S499 Is Phosphorylated by CK2 and Promotes Secondary Phosphorylation of FMRP. eNeuro 3, (2016).
Kajiwara, Y., Buxbaum, J. D. & Grice, D. E. SLITRK1 Binds 14-3-3 and Regulates Neurite Outgrowth in a Phosphorylation-Dependent Manner. Biol. Psychiatry 66, 918–925 (2009).
pubmed: 19640509
doi: 10.1016/j.biopsych.2009.05.033
Aksenova, M. V., Burbaeva, G. S., Kandror, K. V., Kapkov, D. V. & Stepanov, A. S. The decreased level of casein kinase 2 in brain cortex of schizophrenic and Alzheimer’s disease patients. FEBS Lett. 279, 55–57 (1991).
pubmed: 1995343
doi: 10.1016/0014-5793(91)80249-3
Castillo, M. A., Ghose, S., Tamminga, C. A. & Ulery-Reynolds, P. G. Deficits in syntaxin 1 phosphorylation in schizophrenia prefrontal cortex. Biol. Psychiatry 67, 208–216 (2010).
pubmed: 19748077
doi: 10.1016/j.biopsych.2009.07.029
Castello, J. et al. CK2 regulates 5-HT4 receptor signaling and modulates depressive-like behavior. Mol. Psychiatry 23, 872–882 (2018).
pubmed: 29158580
doi: 10.1038/mp.2017.240
Okur, V. et al. De novo mutations in CSNK2A1 are associated with neurodevelopmental abnormalities and dysmorphic features. Hum. Genet. 135, 699–705 (2016).
pubmed: 27048600
doi: 10.1007/s00439-016-1661-y
Trinh, J. et al. A novel de novo mutation in CSNK2A1: reinforcing the link to neurodevelopmental abnormalities and dysmorphic features. J. Hum. Genet. 62, 1005–1006 (2017).
pubmed: 28725024
doi: 10.1038/jhg.2017.73
Chiu, A. T. G. et al. Okur-Chung neurodevelopmental syndrome: Eight additional cases with implications on phenotype and genotype expansion. Clin. Genet. 93, 880–890 (2018).
pubmed: 29240241
doi: 10.1111/cge.13196
Owen, C. I. et al. Extending the phenotype associated with the CSNK2A1-related Okur-Chung syndrome-A clinical study of 11 individuals. Am. J. Med. Genet. A 176, 1108–1114 (2018).
pubmed: 29383814
doi: 10.1002/ajmg.a.38610
Akahira-Azuma, M., Tsurusaki, Y., Enomoto, Y., Mitsui, J. & Kurosawa, K. Refining the clinical phenotype of Okur-Chung neurodevelopmental syndrome. Hum. Genome Var. 5, 18011 (2018).
pubmed: 29619237
pmcid: 5874396
doi: 10.1038/hgv.2018.11
Costa, R. et al. The lysine-specific demethylase 1 is a novel substrate of protein kinase CK2. Biochim. Biophys. Acta 1844, 722–729 (2014).
pubmed: 24486797
doi: 10.1016/j.bbapap.2014.01.014
Colavito, D. et al. Are CSNK2A1 gene mutations associated with retinal dystrophy? Report of a patient carrier of a novel de novo splice site mutation. J. Hum. Genet. 63, 779–781 (2018).
pubmed: 29568000
doi: 10.1038/s10038-018-0434-y
Martinez-Monseny, A. F. et al. Okur-Chung neurodevelopmental syndrome in a patient from Spain. Am. J. Med. Genet. A 182, 20–24 (2020).
pubmed: 31729156
doi: 10.1002/ajmg.a.61405
Xu, S., Lian, Q., Wu, J., Li, L. & Song, J. Dual molecular diagnosis of tricho-rhino-phalangeal syndrome type I and Okur-Chung neurodevelopmental syndrome in one Chinese patient: a case report. BMC Med. Genet. 21, 158 (2020).
pubmed: 32746809
pmcid: 7398275
doi: 10.1186/s12881-020-01096-w
Nakashima, M. et al. Identification of de novo CSNK2A1 and CSNK2B variants in cases of global developmental delay with seizures. J. Hum. Genet. 64, 313–322 (2019).
pubmed: 30655572
doi: 10.1038/s10038-018-0559-z
Poirier, K. et al. CSNK2B splice site mutations in patients cause intellectual disability with or without myoclonic epilepsy. Hum. Mutat. 38, 932–941 (2017).
pubmed: 28585349
doi: 10.1002/humu.23270
Sakaguchi, Y., Uehara, T., Suzuki, H., Kosaki, K. & Takenouchi, T. Truncating mutation in CSNK2B and myoclonic epilepsy. Hum. Mutat. 38, 1611–1612 (2017).
pubmed: 28762608
doi: 10.1002/humu.23307
Li, J. et al. Germline de novo variants in CSNK2B in Chinese patients with epilepsy. Sci. Rep. 9, 17909 (2019).
pubmed: 31784560
pmcid: 6884442
doi: 10.1038/s41598-019-53484-9
Cho, N. H. et al. IDF Diabetes Atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res. Clin. Pract. 138, 271–281 (2018).
pubmed: 29496507
doi: 10.1016/j.diabres.2018.02.023
Association, A. D. 2. Classification and diagnosis of diabetes: standards of medical care in diabetes—2019. Diabetes Care 42, S13–S28 (2019).
doi: 10.2337/dc19-S002
Ampofo, E., Nalbach, L., Menger, M. D., Montenarh, M. & Götz, C. Protein kinase CK2-A putative target for the therapy of diabetes mellitus? Int. J. Mol. Sci. 20, 4398 (2019).
Martos, C., Plana, M., Guasch, M. D. & Itarte, E. Effect of starvation, diabetes and insulin on the casein kinase 2 from rat liver cytosol. Biochem. J. 225, 321–326 (1985).
pubmed: 3883988
pmcid: 1144593
doi: 10.1042/bj2250321
Metallo, A. & Villa-Moruzzi, E. Protein phosphatase-1 and -2A, kinase FA, and casein kinase II in skeletal muscle of streptozotocin diabetic rats. Arch. Biochem. Biophys. 289, 382–386 (1991).
pubmed: 1654859
doi: 10.1016/0003-9861(91)90427-K
Sacco, F. et al. Glucose-regulated and drug-perturbed phosphoproteome reveals molecular mechanisms controlling insulin secretion. Nat. Commun. 7, 13250 (2016).
pubmed: 27841257
pmcid: 5114537
doi: 10.1038/ncomms13250
Tuncay, E. et al. Hyperglycemia-induced changes in ZIP7 and ZnT7 expression cause Zn2+ release from the sarco(endo)plasmic reticulum and mediate ER stress in the heart. Diabetes 66, 1346–1358 (2017).
pubmed: 28232492
doi: 10.2337/db16-1099
Bitirim, C. V., Tuncay, E. & Turan, B. Demonstration of subcellular migration of CK2α localization from nucleus to sarco(endo)plasmic reticulum in mammalian cardiomyocytes under hyperglycemia. Mol. Cell. Biochem. 443, 25–36 (2018).
pubmed: 29058176
doi: 10.1007/s11010-017-3207-6
Iori, E. et al. Effects of CK2 inhibition in cultured fibroblasts from Type 1 Diabetic patients with or without nephropathy. Growth Factors 33, 259–266 (2015).
pubmed: 26340273
doi: 10.3109/08977194.2015.1073725
Huang, J. et al. Protein kinase CK2α catalytic subunit ameliorates diabetic renal inflammatory fibrosis via NF-κB signaling pathway. Biochem. Pharmacol. 132, 102–117 (2017).
pubmed: 28237649
doi: 10.1016/j.bcp.2017.02.016
Huang, J. et al. Sphingosine kinase 1 mediates diabetic renal fibrosis via NF-κB signaling pathway: involvement of CK2α. Oncotarget 8, 88988–89004 (2017).
pubmed: 29179493
pmcid: 5687663
doi: 10.18632/oncotarget.21640
Marselli, L. et al. Gene expression profiles of Beta-cell enriched tissue obtained by laser capture microdissection from subjects with type 2 diabetes. PLoS ONE 5, e11499 (2010).
pubmed: 20644627
pmcid: 2903480
doi: 10.1371/journal.pone.0011499
Lan, Y.-C. et al. Effects of casein kinase 2 alpha 1 gene expression on mice liver susceptible to type 2 diabetes mellitus and obesity. Int J. Med. Sci. 17, 13–20 (2020).
pubmed: 31929734
pmcid: 6945564
doi: 10.7150/ijms.37110
Roher, N. et al. Protein kinase CK2 is altered in insulin-resistant genetically obese (fa/fa) rats. FEBS Lett. 437, 211–215 (1998).
pubmed: 9824292
doi: 10.1016/S0014-5793(98)01230-7
Borgo, C. et al. CK2 modulates adipocyte insulin-signaling and is up-regulated in human obesity. Sci. Rep. 7, 17569 (2017).
pubmed: 29242563
pmcid: 5730587
doi: 10.1038/s41598-017-17809-w
Shinoda, K. et al. Phosphoproteomics identifies CK2 as a negative regulator of beige adipocyte thermogenesis and energy expenditure. Cell Metab. 22, 997–1008 (2015).
pubmed: 26525534
pmcid: 4670581
doi: 10.1016/j.cmet.2015.09.029
Schwind, L. et al. Protein kinase CK2 is necessary for the adipogenic differentiation of human mesenchymal stem cells. Biochim. Biophys. Acta 1853, 2207–2216 (2015).
pubmed: 26025678
doi: 10.1016/j.bbamcr.2015.05.023
Schwind, L., Schetting, S. & Montenarh, M. Inhibition of protein kinase CK2 prevents adipogenic differentiation of mesenchymal stem cells like C3H/10T1/2 Cells. Pharmaceuticals 10, 22 (2017).
Chen, Q. et al. SIRT6 is essential for adipocyte differentiation by regulating mitotic clonal expansion. Cell Rep. 18, 3155–3166 (2017).
pubmed: 28355567
doi: 10.1016/j.celrep.2017.03.006
Schäfer, B. et al. KIF5C: a new binding partner for protein kinase CK2 with a preference for the CK2alpha’ subunit. Cell. Mol. Life Sci. 66, 339–349 (2009).
pubmed: 19011756
doi: 10.1007/s00018-008-8478-3
Sanna, M. et al. White adipose tissue expansion in multiple symmetric lipomatosis is associated with upregulation of CK2, AKT and ERK1/2. Int. J. Mol. Sci. 21, 7933 (2020).
Sommercorn, J., Mulligan, J. A., Lozeman, F. J. & Krebs, E. G. Activation of casein kinase II in response to insulin and to epidermal growth factor. Proc. Natl Acad. Sci. USA 84, 8834–8838 (1987).
pubmed: 3321056
doi: 10.1073/pnas.84.24.8834
Klarlund, J. K. & Czech, M. P. Insulin-like growth factor I and insulin rapidly increase casein kinase II activity in BALB/c 3T3 fibroblasts. J. Biol. Chem. 263, 15872–15875 (1988).
pubmed: 3053682
doi: 10.1016/S0021-9258(18)37530-6
Pérez, M., Grande, J. & Itarte, E. Casein kinase 2 activity increases in the prereplicative phase of liver regeneration. FEBS Lett. 238, 273–276 (1988).
pubmed: 3169262
doi: 10.1016/0014-5793(88)80495-2
Grande, J., Pérez, M., Plana, M. & Itarte, E. Acute effects of insulin and glucagon on hepatic casein kinase 2 in adult fed rats: correlation of the effects on casein kinase 2 with the changes in glycogen synthase activity. Arch. Biochem. Biophys. 275, 478–485 (1989).
pubmed: 2512856
doi: 10.1016/0003-9861(89)90394-9
Maeda, R., Raz, I., Zurlo, F. & Sommercorn, J. Activation of skeletal muscle casein kinase II by insulin is not diminished in subjects with insulin resistance. J. Clin. Investig. 87, 1017–1022 (1991).
pubmed: 1999482
doi: 10.1172/JCI115060
Hei, Y. J. et al. Characterization of insulin-stimulated seryl/threonyl protein kinases in rat skeletal muscle. J. Biol. Chem. 268, 13203–13213 (1993).
pubmed: 8514759
doi: 10.1016/S0021-9258(19)38638-7
Kim, S. J. & Kahn, C. R. Insulin regulation of mitogen-activated protein kinase kinase (MEK), mitogen-activated protein kinase and casein kinase in the cell nucleus: a possible role in the regulation of gene expression. Biochem. J. 323, 621–627 (1997).
pubmed: 9169593
pmcid: 1218363
doi: 10.1042/bj3230621
Litchfield, D. W., Dobrowolska, G. & Krebs, E. G. Regulation of casein kinase II by growth factors: a reevaluation. Cell. Mol. Biol. Res. 40, 373–381 (1994).
pubmed: 7735311
Meng, R. et al. CK2 phosphorylation of Pdx-1 regulates its transcription factor activity. Cell. Mol. Life Sci. 67, 2481–2489 (2010).
pubmed: 20339896
doi: 10.1007/s00018-010-0348-0
Lupp, S. et al. The upstream stimulatory factor USF1 is regulated by protein kinase CK2 phosphorylation. Cell. Signal. 26, 2809–2817 (2014).
pubmed: 25194820
doi: 10.1016/j.cellsig.2014.08.028
Servas, C. et al. The mammalian STE20-like kinase 1 (MST1) is a substrate for the apoptosis inhibiting protein kinase CK2. Cell. Signal. 36, 163–175 (2017).
pubmed: 28487119
doi: 10.1016/j.cellsig.2017.05.005
Rossi, M. et al. CK2 acts as a potent negative regulator of receptor-mediated insulin release in vitro and in vivo. Proc. Natl Acad. Sci. USA 112, E6818–6824 (2015).
pubmed: 26598688
doi: 10.1073/pnas.1519430112
Doliba, N. M. et al. Inhibition of cholinergic potentiation of insulin secretion from pancreatic islets by chronic elevation of glucose and fatty acids: protection by casein kinase 2 inhibitor. Mol. Metab. 6, 1240–1253 (2017).
pubmed: 29031723
pmcid: 5641685
doi: 10.1016/j.molmet.2017.07.017
Singh, N. N. & Ramji, D. P. Protein kinase CK2, an important regulator of the inflammatory response? J. Mol. Med. 86, 887–897 (2008).
pubmed: 18437331
doi: 10.1007/s00109-008-0352-0
Drygin, D. et al. Protein kinase CK2 modulates IL-6 expression in inflammatory breast cancer. Biochem. Biophys. Res. Commun. 415, 163–167 (2011).
pubmed: 22027148
doi: 10.1016/j.bbrc.2011.10.046
Koch, S. et al. Protein kinase CK2 is a critical regulator of epithelial homeostasis in chronic intestinal inflammation. Mucosal Immunol. 6, 136–145 (2013).
pubmed: 22763408
doi: 10.1038/mi.2012.57
Parhar, K., Morse, J. & Salh, B. The role of protein kinase CK2 in intestinal epithelial cell inflammatory signaling. Int. J. Colorectal Dis. 22, 601–609 (2007).
pubmed: 17009010
doi: 10.1007/s00384-006-0193-7
Yamada, M. et al. Inhibition of protein kinase CK2 prevents the progression of glomerulonephritis. Proc. Natl Acad. Sci. USA 102, 7736–7741 (2005).
pubmed: 15897466
doi: 10.1073/pnas.0409818102
Gibson, S. A. & Benveniste, E. N. Protein kinase CK2: an emerging regulator of immunity. Trends Immunol. 39, 82–85 (2018).
pubmed: 29307449
pmcid: 5800982
doi: 10.1016/j.it.2017.12.002
Yang, W. et al. Protein kinase 2 (CK2) controls CD4+ T cell effector function in the pathogenesis of colitis. Mucosal Immunol. 13, 788–798 https://doi.org/10.1038/s41385-020-0258-x (2020).
Raju, P. et al. Inactivation of paracellular cation-selective claudin-2 channels attenuates immune-mediated experimental colitis in mice. J. Clin. Investig. 130, 5197–5208 https://doi.org/10.1172/JCI138697 (2020).
Kim, S. O. et al. Ischemia induced activation of heat shock protein 27 kinases and casein kinase 2 in the preconditioned rabbit heart. Biochem. Cell Biol. 77, 559–567 (1999).
pubmed: 10668633
doi: 10.1139/o99-065
Zhou, H. et al. Pathogenesis of cardiac ischemia reperfusion injury is associated with CK2α-disturbed mitochondrial homeostasis via suppression of FUNDC1-related mitophagy. Cell Death Differ. 25, 1080–1093 (2018).
pubmed: 29540794
pmcid: 5988750
doi: 10.1038/s41418-018-0086-7
Wadey, K. S. et al. Protein kinase CK2 inhibition suppresses neointima formation via a proline-rich homeodomain-dependent mechanism. Vasc. Pharmacol. 99, 34–44 (2017).
doi: 10.1016/j.vph.2017.09.004
Hauck, L. et al. Protein kinase CK2 links extracellular growth factor signaling with the control of p27 Kip1 stability in the heart. Nat. Med. 14, 315–324 (2008).
pubmed: 18311148
doi: 10.1038/nm1729
Zhao, X., Qi, H., Zhou, J., Xu, S. & Gao, Y. P27 protects cardiomyocytes from sepsis via activation of autophagy and inhibition of apoptosis. Med. Sci. Monit. 24, 8565–8576 (2018).
pubmed: 30478251
pmcid: 6278300
doi: 10.12659/MSM.912750
Eom, G. H. et al. Casein kinase-2α1 induces hypertrophic response by phosphorylation of histone deacetylase 2 S394 and its activation in the heart. Circulation 123, 2392–2403 (2011).
pubmed: 21576649
doi: 10.1161/CIRCULATIONAHA.110.003665
Murtaza, I. et al. Down-regulation of catalase and oxidative modification of protein kinase CK2 lead to the failure of apoptosis repressor with caspase recruitment domain to inhibit cardiomyocyte hypertrophy. J. Biol. Chem. 283, 5996–6004 (2008).
pubmed: 18171680
doi: 10.1074/jbc.M706466200
Abdul-Ghani, M. et al. Cardiotrophin 1 stimulates beneficial myogenic and vascular remodeling of the heart. Cell Res. 27, 1195–1215 (2017).
pubmed: 28785017
pmcid: 5630684
doi: 10.1038/cr.2017.87
Yang, D. et al. Apamin-sensitive K+ current upregulation in volume-overload heart failure is associated with the decreased interaction of CK2 with SK2. J. Membr. Biol. 248, 1181–1189 (2015).
pubmed: 26362340
doi: 10.1007/s00232-015-9839-0
Wu, F. et al. Apelin-13 attenuates ER stress-mediated neuronal apoptosis by activating Gαi/Gαq-CK2 signaling in ischemic stroke. Exp. Neurol. 302, 136–144 (2018).
pubmed: 29337146
doi: 10.1016/j.expneurol.2018.01.006
Padgett, C. S. et al. 414 Clinical pharmacokinetics and pharmacodynamics of CX-4945, a novel inhibitor of protein kinase CK2: Interim report from the phase 1 clinical trial. Eur. J. Cancer Suppl. 8, 131–132 (2010).
doi: 10.1016/S1359-6349(10)72121-2
Zhong, B., Campagne, O., Salloum, R., Purzner, T. & Stewart, C. F. LC-MS/MS method for quantitation of the CK2 inhibitor silmitasertib (CX-4945) in human plasma, CSF, and brain tissue, and application to a clinical pharmacokinetic study in children with brain tumors. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 1152, 122254 (2020).
doi: 10.1016/j.jchromb.2020.122254
Lertsuwan, J. et al. CX-4945 induces methuosis in cholangiocarcinoma cell lines by a CK2-independent mechanism. Cancers 10, 283 (2018).
Golding, S. E. et al. Improved ATM kinase inhibitor KU-60019 radiosensitizes glioma cells, compromises insulin, AKT and ERK prosurvival signaling, and inhibits migration and invasion. Mol. Cancer Ther. 8, 2894–2902 (2009).
pubmed: 19808981
pmcid: 2761990
doi: 10.1158/1535-7163.MCT-09-0519
Sarno, S. et al. Selectivity of 4,5,6,7-tetrabromobenzotriazole, an ATP site-directed inhibitor of protein kinase CK2 (‘casein kinase-2’). FEBS Lett. 496, 44–48 (2001).
pubmed: 11343704
doi: 10.1016/S0014-5793(01)02404-8
Cozza, G. et al. Cell-permeable dual inhibitors of protein kinases CK2 and PIM-1: structural features and pharmacological potential. Cell. Mol. Life Sci. 71, 3173–3185 (2014).
pubmed: 24442476
doi: 10.1007/s00018-013-1552-5
Pagano, M. A. et al. The selectivity of inhibitors of protein kinase CK2: an update. Biochem. J. 415, 353–365 (2008).
pubmed: 18588507
doi: 10.1042/BJ20080309
Sarno, S. et al. Biochemical and three-dimensional-structural study of the specific inhibition of protein kinase CK2 by [5-oxo-5,6-dihydroindolo-(1,2-a)quinazolin-7-yl]acetic acid (IQA). Biochem. J. 374, 639–646 (2003).
Cozza, G. et al. Urolithin as a converging scaffold linking ellagic acid and coumarin analogues: design of potent protein kinase CK2 inhibitors. ChemMedChem 6, 2273–2286 (2011).
pubmed: 21972104
doi: 10.1002/cmdc.201100338
Cozza, G., Venerando, A., Sarno, S. & Pinna, L. A. The selectivity of CK2 inhibitor quinalizarin: a reevaluation. Biomed. Res. Int. 2015, 734127 (2015).
pubmed: 26558278
pmcid: 4628998
doi: 10.1155/2015/734127
Dalle Vedove, A. et al. A novel class of selective CK2 inhibitors targeting its open hinge conformation. Eur. J. Med. Chem. 195, 112267 (2020).
pubmed: 32283296
doi: 10.1016/j.ejmech.2020.112267
Cozza, G. et al. Quinalizarin as a potent, selective and cell-permeable inhibitor of protein kinase CK2. Biochem. J. 421, 387–395 (2009).
pubmed: 19432557
doi: 10.1042/BJ20090069
Pierre, F. et al. Discovery and SAR of 5-(3-chlorophenylamino)benzo[c][2,6]naphthyridine-8-carboxylic acid (CX-4945), the first clinical stage inhibitor of protein kinase CK2 for the treatment of cancer. J. Med. Chem. 54, 635–654 (2011).
pubmed: 21174434
doi: 10.1021/jm101251q
Martínez, R. et al. Multitarget anticancer agents based on histone deacetylase and protein kinase CK2 inhibitors. Molecules 25, 1497 (2020).
Chen, F., Pei, S., Wang, X., Zhu, Q. & Gou, S. Emerging JWA-targeted Pt(IV) prodrugs conjugated with CX-4945 to overcome chemo-immune-resistance. Biochem. Biophys. Res. Commun. 521, 753–761 (2020).
pubmed: 31703842
doi: 10.1016/j.bbrc.2019.10.184
Perea, S. E. et al. CIGB-300, a novel proapoptotic peptide that impairs the CK2 phosphorylation and exhibits anticancer properties both in vitro and in vivo. Mol. Cell Biochem. 316, 163–167 (2008).
pubmed: 18575815
doi: 10.1007/s11010-008-9814-5
Martins, L. R. et al. Activity of the clinical-stage CK2-specific inhibitor CX-4945 against chronic lymphocytic leukemia. Leukemia 28, 179–182 (2014).
pubmed: 23925046
doi: 10.1038/leu.2013.232
Perera, Y. et al. CIGB-300 anticancer peptide regulates the protein kinase CK2-dependent phosphoproteome. Mol. Cell. Biochem. 470, 63–75 (2020).
pubmed: 32405972
doi: 10.1007/s11010-020-03747-1
Gottardo, M. F. et al. Preclinical efficacy of CIGB-300, an anti-CK2 peptide, on breast cancer metastasic colonization. Sci. Rep. 10, 14689 (2020).
pubmed: 32895446
pmcid: 7477577
doi: 10.1038/s41598-020-71854-6
Solares, A. M. et al. Safety and preliminary efficacy data of a novel casein kinase 2 (CK2) peptide inhibitor administered intralesionally at four dose levels in patients with cervical malignancies. BMC Cancer 9, 146 (2009).
pubmed: 19439079
pmcid: 2689241
doi: 10.1186/1471-2407-9-146
Farina, H. G. et al. CIGB-300, a proapoptotic peptide, inhibits angiogenesis in vitro and in vivo. Exp. Cell Res. 317, 1677–1688 (2011).
pubmed: 21565189
doi: 10.1016/j.yexcr.2011.04.011
Pierre, F. et al. Pre-clinical characterization of CX-4945, a potent and selective small molecule inhibitor of CK2 for the treatment of cancer. Mol. Cell. Biochem. 356, 37–43 (2011).
pubmed: 21755459
doi: 10.1007/s11010-011-0956-5
Pierre, F. et al. 7-(4H-1,2,4-Triazol-3-yl)benzo[c][2,6]naphthyridines: a novel class of Pim kinase inhibitors with potent cell antiproliferative activity. Bioorg. Med. Chem. Lett. 21, 6687–6692 (2011).
pubmed: 21982499
doi: 10.1016/j.bmcl.2011.09.059
Prins, R. C. et al. CX-4945, a selective inhibitor of casein kinase-2 (CK2), exhibits anti-tumor activity in hematologic malignancies including enhanced activity in chronic lymphocytic leukemia when combined with fludarabine and inhibitors of the B-cell receptor pathway. Leukemia 27, 2094–2096 (2013).
pubmed: 23900138
doi: 10.1038/leu.2013.228
Ribeiro, S. T. et al. Casein kinase 2 controls the survival of normal thymic and leukemic γδ T cells via promotion of AKT signaling. Leukemia 31, 1603–1610 (2017).
pubmed: 27899804
doi: 10.1038/leu.2016.363
Siddiqui-Jain, A. et al. CX-4945, an orally bioavailable selective inhibitor of protein kinase CK2, inhibits prosurvival and angiogenic signaling and exhibits antitumor efficacy. Cancer Res. 70, 10288–10298 (2010).
pubmed: 21159648
doi: 10.1158/0008-5472.CAN-10-1893
Takahashi, K. et al. Inhibition of casein kinase 2 prevents growth of human osteosarcoma. Oncol. Rep. 37, 1141–1147 (2017).
pubmed: 27959425
doi: 10.3892/or.2016.5310
Zakharia, K. et al. Preclinical in vitro and in vivo evidence of an antitumor effect of CX-4945, a casein kinase II inhibitor, in cholangiocarcinoma. Transl. Oncol. 12, 143–153 (2019).
pubmed: 30316146
doi: 10.1016/j.tranon.2018.09.005
Nitta, R. T. et al. Casein kinase 2α regulates glioblastoma brain tumor-initiating cell growth through the β-catenin pathway. Oncogene 34, 3688–3699 (2015).
pubmed: 25241897
doi: 10.1038/onc.2014.299
Jung, M. et al. Inhibiting casein kinase 2 overcomes paclitaxel resistance in gastric cancer. Gastric Cancer 22, 153-1163 https://doi.org/10.1007/s10120-019-00971-7 (2019).
Ku, M. J. et al. CK2 inhibitor CX4945 induces sequential inactivation of proteins in the signaling pathways related with cell migration and suppresses metastasis of A549 human lung cancer cells. Bioorg. Med. Chem. Lett. 23, 5609–5613 (2013).
pubmed: 24012124
doi: 10.1016/j.bmcl.2013.08.043
Kim, J. & Hwan Kim, S. CK2 inhibitor CX-4945 blocks TGF-β1-induced epithelial-to-mesenchymal transition in A549 human lung adenocarcinoma cells. PLoS ONE 8, e74342 (2013).
pubmed: 24023938
pmcid: 3762800
doi: 10.1371/journal.pone.0074342
Son, Y. H., Moon, S. H. & Kim, J. The protein kinase 2 inhibitor CX-4945 regulates osteoclast and osteoblast differentiation In vitro. Mol. Cells 36, 417–423 (2013).
pubmed: 24293011
pmcid: 3887940
doi: 10.1007/s10059-013-0184-9
Bender, M. et al. Impact of protein kinase CK2 inhibitors on proliferation and differentiation of neural stem cells. Heliyon 3, e00318 (2017).
pubmed: 28649667
pmcid: 5470557
doi: 10.1016/j.heliyon.2017.e00318
Siddiqui-Jain, A. et al. CK2 inhibitor CX-4945 suppresses DNA repair response triggered by DNA-targeted anticancer drugs and augments efficacy: mechanistic rationale for drug combination therapy. Mol. Cancer Ther. 11, 994–1005 (2012).
pubmed: 22267551
doi: 10.1158/1535-7163.MCT-11-0613
Afzal, M., Kren, B. T., Naveed, A. K., Trembley, J. H. & Ahmed, K. Protein kinase CK2 impact on intracellular calcium homeostasis in prostate cancer. Mol. Cell Biochem. 470, 131–143 (2020).
pubmed: 32436081
doi: 10.1007/s11010-020-03752-4
Kim, H. et al. Identification of a novel function of CX-4945 as a splicing regulator. PLoS ONE 9, e94978 (2014).
pubmed: 24743259
pmcid: 3990583
doi: 10.1371/journal.pone.0094978