Protein kinase CK2: a potential therapeutic target for diverse human diseases.


Journal

Signal transduction and targeted therapy
ISSN: 2059-3635
Titre abrégé: Signal Transduct Target Ther
Pays: England
ID NLM: 101676423

Informations de publication

Date de publication:
17 05 2021
Historique:
received: 25 09 2020
accepted: 22 03 2021
revised: 19 03 2021
entrez: 17 5 2021
pubmed: 18 5 2021
medline: 1 6 2021
Statut: epublish

Résumé

CK2 is a constitutively active Ser/Thr protein kinase, which phosphorylates hundreds of substrates, controls several signaling pathways, and is implicated in a plethora of human diseases. Its best documented role is in cancer, where it regulates practically all malignant hallmarks. Other well-known functions of CK2 are in human infections; in particular, several viruses exploit host cell CK2 for their life cycle. Very recently, also SARS-CoV-2, the virus responsible for the COVID-19 pandemic, has been found to enhance CK2 activity and to induce the phosphorylation of several CK2 substrates (either viral and host proteins). CK2 is also considered an emerging target for neurological diseases, inflammation and autoimmune disorders, diverse ophthalmic pathologies, diabetes, and obesity. In addition, CK2 activity has been associated with cardiovascular diseases, as cardiac ischemia-reperfusion injury, atherosclerosis, and cardiac hypertrophy. The hypothesis of considering CK2 inhibition for cystic fibrosis therapies has been also entertained for many years. Moreover, psychiatric disorders and syndromes due to CK2 mutations have been recently identified. On these bases, CK2 is emerging as an increasingly attractive target in various fields of human medicine, with the advantage that several very specific and effective inhibitors are already available. Here, we review the literature on CK2 implication in different human pathologies and evaluate its potential as a pharmacological target in the light of the most recent findings.

Identifiants

pubmed: 33994545
doi: 10.1038/s41392-021-00567-7
pii: 10.1038/s41392-021-00567-7
pmc: PMC8126563
doi:

Substances chimiques

Protein Kinase Inhibitors 0
Casein Kinase II EC 2.7.11.1

Types de publication

Journal Article Research Support, Non-U.S. Gov't Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

183

Subventions

Organisme : Associazione Italiana per la Ricerca sul Cancro (Italian Association for Cancer Research)
ID : IG 18756
Organisme : AFM-Téléthon (French Muscular Dystrophy Association)
ID : 22974
Organisme : Fondazione per la Ricerca sulla Fibrosi Cistica (Fondazione FFC)
ID : FFC#12/2017
Organisme : Fondazione per la Ricerca sulla Fibrosi Cistica (Fondazione FFC)
ID : FFC#11/2019

Références

Venerando, A., Ruzzene, M. & Pinna, L. A. Casein kinase: the triple meaning of a misnomer. Biochem. J. 460, 141–156 (2014).
pubmed: 24825444 doi: 10.1042/BJ20140178
Meggio, F. & Pinna, L. A. One-thousand-and-one substrates of protein kinase CK2? FASEB J. 17, 349–368 (2003).
pubmed: 12631575 doi: 10.1096/fj.02-0473rev
Ruzzene, M., Tosoni, K., Zanin, S., Cesaro, L. & Pinna, L. A. Protein kinase CK2 accumulation in ‘oncophilic’ cells: causes and effects. Mol. Cell. Biochem. 6, 5–10 (2011).
doi: 10.1007/s11010-011-0959-2
Pinna, L. A. Protein kinase CK2: a challenge to canons. J. Cell. Sci. 115, 3873–3878 (2002).
pubmed: 12244125 doi: 10.1242/jcs.00074
St-Denis, N. A. & Litchfield, D. W. Protein kinase CK2 in health and disease: From birth to death: the role of protein kinase CK2 in the regulation of cell proliferation and survival. Cell. Mol. Life Sci. 66, 1817–1829 (2009).
pubmed: 19387552 doi: 10.1007/s00018-009-9150-2
Ruzzene, M. & Pinna, L. A. Addiction to protein kinase CK2: a common denominator of diverse cancer cells? Biochim. Biophys. Acta 1804, 499–504 (2010).
pubmed: 19665589 doi: 10.1016/j.bbapap.2009.07.018
Fragoso, R. & Barata, J. T. Kinases, tails and more: regulation of PTEN function by phosphorylation. Methods 77–78, 75–81 (2015).
pubmed: 25448482 doi: 10.1016/j.ymeth.2014.10.015
Ruzzene, M., Bertacchini, J., Toker, A. & Marmiroli, S. Cross-talk between the CK2 and AKT signaling pathways in cancer. Adv. Biol. Regul. 64, 1–8 (2017).
pubmed: 28373060 doi: 10.1016/j.jbior.2017.03.002
Dominguez, I., Sonenshein, G. E. & Seldin, D. C. Protein kinase CK2 in health and disease: CK2 and its role in Wnt and NF-kappaB signaling: linking development and cancer. Cell. Mol. Life Sci. 66, 1850–1857 (2009).
pubmed: 19387549 pmcid: 3905806 doi: 10.1007/s00018-009-9153-z
Wang, D., Westerheide, S. D., Hanson, J. L. & Baldwin, A. S. Tumor necrosis factor alpha-induced phosphorylation of RelA/p65 on Ser529 is controlled by casein kinase II. J. Biol. Chem. 275, 32592–32597 (2000).
pubmed: 10938077 doi: 10.1074/jbc.M001358200
Manni, S. et al. Protein kinase CK2 inhibition down modulates the NF-κB and STAT3 survival pathways, enhances the cellular proteotoxic stress and synergistically boosts the cytotoxic effect of bortezomib on multiple myeloma and mantle cell lymphoma cells. PLoS ONE 8, e75280 (2013).
pubmed: 24086494 pmcid: 3785505 doi: 10.1371/journal.pone.0075280
Zheng, Y. et al. A CK2-dependent mechanism for activation of the JAK-STAT signaling pathway. Blood 118, 156–166 (2011).
pubmed: 21527517 pmcid: 3139382 doi: 10.1182/blood-2010-01-266320
Kalathur, M. et al. A chemogenomic screening identifies CK2 as a target for pro-senescence therapy in PTEN-deficient tumours. Nat. Commun. 6, 7227 (2015).
pubmed: 26085373 doi: 10.1038/ncomms8227
Rabalski, A. J., Gyenis, L. & Litchfield, D. W. Molecular pathways: emergence of protein kinase CK2 (CSNK2) as a potential target to inhibit survival and DNA damage response and repair pathways in cancer cells. Clin. Cancer Res. 22, 2840–2847 (2016).
pubmed: 27306791 doi: 10.1158/1078-0432.CCR-15-1314
Götz, C., Bachmann, C. & Montenarh, M. Inhibition of protein kinase CK2 leads to a modulation of androgen receptor dependent transcription in prostate cancer cells. Prostate 67, 125–134 (2007).
pubmed: 17044081 doi: 10.1002/pros.20471
Trembley, J. H. et al. CK2 pro-survival role in prostate cancer is mediated via maintenance and promotion of androgen receptor and NFκB p65 expression. Pharmaceuticals 12, 89 (2019).
Jia, H. et al. Casein kinase 2 promotes Hedgehog signaling by regulating both smoothened and Cubitus interruptus. J. Biol. Chem. 285, 37218–37226 (2010).
pubmed: 20876583 pmcid: 2988328 doi: 10.1074/jbc.M110.174565
Trembley, J. H. et al. Emergence of protein kinase CK2 as a key target in cancer therapy. Biofactors 36, 187–195 (2010).
pubmed: 20533398 pmcid: 2916697 doi: 10.1002/biof.96
Zhang, S. et al. Inhibition of CK2α down-regulates Notch1 signalling in lung cancer cells. J. Cell. Mol. Med. 17, 854–862 (2013).
pubmed: 23651443 pmcid: 3729857 doi: 10.1111/jcmm.12068
de Gooijer, M. C., Guillén, N. M., Bernards, R., Wurdinger, T. & van Tellingen, O. An experimenter’s guide to glioblastoma invasion pathways. Trends Mol. Med. 24, 763–780 (2018).
pubmed: 30072121 doi: 10.1016/j.molmed.2018.07.003
Battistutta, R., De Moliner, E., Sarno, S., Zanotti, G. & Pinna, L. A. Structural features underlying selective inhibition of protein kinase CK2 by ATP site-directed tetrabromo-2-benzotriazole. Protein Sci. 10, 2200–2206 (2001).
pubmed: 11604527 pmcid: 2374052 doi: 10.1110/ps.19601
Viht, K. et al. Acetoxymethyl ester of tetrabromobenzimidazole-peptoid conjugate for inhibition of protein kinase CK2 in living cells. Bioconjug. Chem. 26, 2324–2335 (2015).
pubmed: 26559659 doi: 10.1021/acs.bioconjchem.5b00383
Cozza, G. et al. Design, validation and efficacy of bisubstrate inhibitors specifically affecting ecto-CK2 kinase activity. Biochem. J. 471, 415–430 (2015).
pubmed: 26349539 doi: 10.1042/BJ20141127
Laudet, B. et al. Structure-based design of small peptide inhibitors of protein kinase CK2 subunit interaction. Biochem J. 408, 363–373 (2007).
pubmed: 17714077 pmcid: 2267368 doi: 10.1042/BJ20070825
Prudent, R. et al. Identification of polyoxometalates as nanomolar noncompetitive inhibitors of protein kinase CK2. Chem. Biol. 15, 683–692 (2008).
pubmed: 18635005 doi: 10.1016/j.chembiol.2008.05.018
Perea, S. E., Baladrón, I., Valenzuela, C. & Perera, Y. CIGB-300: a peptide-based drug that impairs the protein kinase CK2-mediated phosphorylation. Semin. Oncol. 45, 58–67 (2018).
pubmed: 30318085 doi: 10.1053/j.seminoncol.2018.04.006
Battistutta, R. et al. Unprecedented selectivity and structural determinants of a new class of protein kinase CK2 inhibitors in clinical trials for the treatment of cancer. Biochemistry 50, 8478–8488 (2011).
pubmed: 21870818 doi: 10.1021/bi2008382
Nie, Z. et al. Structure-based design, synthesis, and study of pyrazolo[1,5-a][1,3,5]triazine derivatives as potent inhibitors of protein kinase CK2. Bioorg. Med. Chem. Lett. 17, 4191–4195 (2007).
pubmed: 17540560 doi: 10.1016/j.bmcl.2007.05.041
Oshima, T. et al. Cell-based screen identifies a new potent and highly selective CK2 inhibitor for modulation of circadian rhythms and cancer cell growth. Sci. Adv. 5, eaau9060 (2019).
pubmed: 30746467 pmcid: 6357737 doi: 10.1126/sciadv.aau9060
Borgo, C. et al. Comparing the efficacy and selectivity of Ck2 inhibitors. A phosphoproteomics approach. Eur. J. Med. Chem. 214, 113217 (2021).
pubmed: 33548633 doi: 10.1016/j.ejmech.2021.113217
Silva-Pavez, E. et al. CK2 inhibition with silmitasertib promotes methuosis-like cell death associated to catastrophic massive vacuolization of colorectal cancer cells. Cell Death Dis. 10, 73 (2019).
pubmed: 30683840 pmcid: 6347595 doi: 10.1038/s41419-019-1306-x
D’Amore, C. et al. ‘Janus’ efficacy of CX-5011: CK2 inhibition and methuosis induction by independent mechanisms. Biochim. Biophys. Acta Mol. Cell Res. 1867, 118807 (2020).
pubmed: 32745724 doi: 10.1016/j.bbamcr.2020.118807
Cozza, G. The development of CK2 inhibitors: from traditional pharmacology to in silico rational drug design. Pharmaceuticals 10, 26 (2017).
Cozza, G. & Pinna, L. A. Casein kinases as potential therapeutic targets. Expert Opin. Ther. Targets 20, 319–340 (2016).
pubmed: 26565594 doi: 10.1517/14728222.2016.1091883
Qiao, Y. et al. Small molecule modulators targeting protein kinase CK1 and CK2. Eur. J. Medicinal Chem. 181, 111581 (2019).
doi: 10.1016/j.ejmech.2019.111581
Di Maira, G. et al. The protein kinase CK2 contributes to the malignant phenotype of cholangiocarcinoma cells. Oncogenesis 8, 61 (2019).
pubmed: 31641101 pmcid: 6805921 doi: 10.1038/s41389-019-0171-x
D’Amore, C., Borgo, C., Sarno, S. & Salvi, M. Role of CK2 inhibitor CX-4945 in anti-cancer combination therapy - potential clinical relevance. Cell. Oncol. 43, 1003–1016 (2020).
doi: 10.1007/s13402-020-00566-w
Borgo, C. & Ruzzene, M. Protein kinase CK2 inhibition as a pharmacological strategy. Adv. Protein Chem. Struct. Biol. 124, 23–46 (2021).
Seldin, D. C. & Leder, P. Casein kinase II alpha transgene-induced murine lymphoma: relation to theileriosis in cattle. Science 267, 894–897 (1995).
pubmed: 7846532 doi: 10.1126/science.7846532
Buljan, M. et al. Kinase interaction network expands functional and disease roles of human kinases. Mol. Cell 79, 504–520.e9 (2020).
pubmed: 32707033 pmcid: 7427327 doi: 10.1016/j.molcel.2020.07.001
Duncan, J. S. et al. Regulation of cell proliferation and survival: convergence of protein kinases and caspases. Biochim. Biophys. Acta 1804, 505–510 (2010).
pubmed: 19900592 doi: 10.1016/j.bbapap.2009.11.001
Borgo, C. & Ruzzene, M. Role of protein kinase CK2 in antitumor drug resistance. J. Exp. Clin. Cancer Res. 38, 287 (2019).
pubmed: 31277672 pmcid: 6612148 doi: 10.1186/s13046-019-1292-y
Buontempo, F. et al. Cytotoxic activity of the casein kinase 2 inhibitor CX-4945 against T-cell acute lymphoblastic leukemia: targeting the unfolded protein response signaling. Leukemia 28, 543–553 (2014).
pubmed: 24253024 doi: 10.1038/leu.2013.349
Manni, S. et al. Protein kinase CK2 protects multiple myeloma cells from ER stress-induced apoptosis and from the cytotoxic effect of HSP90 inhibition through regulation of the unfolded protein response. Clin. Cancer Res. 18, 1888–1900 (2012).
pubmed: 22351691 doi: 10.1158/1078-0432.CCR-11-1789
Miyata, Y. Protein kinase CK2 in health and disease: CK2: the kinase controlling the Hsp90 chaperone machinery. Cell. Mol. Life Sci. 66, 1840–1849 (2009).
pubmed: 19387550 doi: 10.1007/s00018-009-9152-0
Schaefer, S., Svenstrup, T. H. & Guerra, B. The small-molecule kinase inhibitor D11 counteracts 17-AAG-mediated up-regulation of HSP70 in brain cancer cells. PLoS ONE 12, e0177706 (2017).
pubmed: 28542269 pmcid: 5436671 doi: 10.1371/journal.pone.0177706
Borgo, C. et al. Dependence of HSP27 cellular level on protein kinase CK2 discloses novel therapeutic strategies. Biochim. Biophys. Acta 1862, 2902–2910 (2018).
doi: 10.1016/j.bbagen.2018.09.014
Cox, M. L. & Meek, D. W. Phosphorylation of serine 392 in p53 is a common and integral event during p53 induction by diverse stimuli. Cell. Signal. 22, 564–571 (2010).
pubmed: 19932175 doi: 10.1016/j.cellsig.2009.11.014
Götz, C., Kartarius, S., Scholtes, P., Nastainczyk, W. & Montenarh, M. Identification of a CK2 phosphorylation site in mdm2. Eur. J. Biochem. 266, 493–501 (1999).
pubmed: 10561590 doi: 10.1046/j.1432-1327.1999.00882.x
Mandato, E., Manni, S., Zaffino, F., Semenzato, G. & Piazza, F. Targeting CK2-driven non-oncogene addiction in B-cell tumors. Oncogene 35, 6045–6052 (2016).
pubmed: 27041560 doi: 10.1038/onc.2016.86
Gowda, C. et al. Cellular signaling and epigenetic regulation of gene expression in leukemia. Adv. Biol. Regul. 75, 100665 (2020).
pubmed: 31623972 doi: 10.1016/j.jbior.2019.100665
Scaglioni, P. P. et al. A CK2-dependent mechanism for degradation of the PML tumor suppressor. Cell 126, 269–283 (2006).
pubmed: 16873060 doi: 10.1016/j.cell.2006.05.041
Gowda, C. et al. Casein kinase II (CK2) as a therapeutic target for hematological malignancies. Curr. Pharm. Des. 23, 95–107 (2017).
pubmed: 27719640
Trembley, J. H., Wang, G., Unger, G., Slaton, J. & Ahmed, K. Protein kinase CK2 in health and disease: CK2: a key player in cancer biology. Cell. Mol. Life Sci. 66, 1858–1867 (2009).
pubmed: 19387548 pmcid: 4385580 doi: 10.1007/s00018-009-9154-y
Unger, G. M., Davis, A. T., Slaton, J. W. & Ahmed, K. Protein kinase CK2 as regulator of cell survival: implications for cancer therapy. Curr. Cancer Drug Targets 4, 77–84 (2004).
pubmed: 14965269 doi: 10.2174/1568009043481687
Benavent Acero, F. et al. CIGB-300, an anti-CK2 peptide, inhibits angiogenesis, tumor cell invasion and metastasis in lung cancer models. Lung Cancer 107, 14–21 (2017).
pubmed: 27319334 doi: 10.1016/j.lungcan.2016.05.026
Im, D.-K., Cheong, H., Lee, J. S., Oh, M.-K. & Yang, K. M. Protein kinase CK2-dependent aerobic glycolysis-induced lactate dehydrogenase A enhances the migration and invasion of cancer cells. Sci. Rep. 9, 5337 (2019).
pubmed: 30926903 pmcid: 6441004 doi: 10.1038/s41598-019-41852-4
Niechi, I. et al. Colon cancer cell invasion is promoted by protein kinase CK2 through increase of endothelin-converting enzyme-1c protein stability. Oncotarget 6, 42749–42760 (2015).
pubmed: 26543229 pmcid: 4767467 doi: 10.18632/oncotarget.5722
Siddiqui, Y. H. et al. CK2 abrogates the inhibitory effects of PRH/HHEX on prostate cancer cell migration and invasion and acts through PRH to control cell proliferation. Oncogenesis 6, e293 (2017).
pubmed: 28134934 pmcid: 5294245 doi: 10.1038/oncsis.2016.82
Zou, J. et al. Protein kinase CK2α is overexpressed in colorectal cancer and modulates cell proliferation and invasion via regulating EMT-related genes. J. Transl. Med. 9, 97 (2011).
pubmed: 21702981 pmcid: 3132712 doi: 10.1186/1479-5876-9-97
Filhol, O., Giacosa, S., Wallez, Y. & Cochet, C. Protein kinase CK2 in breast cancer: the CK2β regulatory subunit takes center stage in epithelial plasticity. Cell. Mol. Life Sci. 72, 3305–3322 (2015).
pubmed: 25990538 doi: 10.1007/s00018-015-1929-8
Gapany, M. et al. Association of elevated protein kinase CK2 activity with aggressive behavior of squamous cell carcinoma of the head and neck. Mol. Med. 1, 659–666 (1995).
pubmed: 8529132 pmcid: 2229971 doi: 10.1007/BF03401606
Pérez-Moreno, P. et al. Endothelin-converting enzyme-1c promotes stem cell traits and aggressiveness in colorectal cancer cells. Mol. Oncol. 14, 347–362 (2020).
pubmed: 31788944 doi: 10.1002/1878-0261.12609
Montenarh, M. Protein kinase CK2 and angiogenesis. Adv. Clin. Exp. Med. 23, 153–158 (2014).
pubmed: 24913104 doi: 10.17219/acem/37040
Mottet, D., Ruys, S. P. D., Demazy, C., Raes, M. & Michiels, C. Role for casein kinase 2 in the regulation of HIF-1 activity. Int. J. Cancer 117, 764–774 (2005).
pubmed: 15957168 doi: 10.1002/ijc.21268
Dixit, D., Ahmad, F., Ghildiyal, R., Joshi, S. D. & Sen, E. CK2 inhibition induced PDK4-AMPK axis regulates metabolic adaptation and survival responses in glioma. Exp. Cell Res. 344, 132–142 (2016).
pubmed: 27001465 doi: 10.1016/j.yexcr.2016.03.017
Silva-Pavez, E. & Tapia, J. C. Protein kinase CK2 in cancer energetics. Front. Oncol. 10, 893 (2020).
pubmed: 32626654 pmcid: 7315807 doi: 10.3389/fonc.2020.00893
Yang, K. M. & Kim, K. Protein kinase CK2 modulation of pyruvate kinase M isoforms augments the Warburg effect in cancer cells. J. Cell. Biochem. 119, 8501–8510 (2018).
pubmed: 30015359 doi: 10.1002/jcb.27078
Zhang, X. et al. Targeting protein kinase CK2 suppresses bladder cancer cell survival via the glucose metabolic pathway. Oncotarget 7, 87361–87372 (2016).
pubmed: 27888634 pmcid: 5349994 doi: 10.18632/oncotarget.13571
Zonta, F. et al. Contribution of the CK2 catalytic isoforms α and α′ to the glycolytic phenotype of tumor cells. Cells 10, 181 (2021).
pubmed: 33477590 pmcid: 7831337 doi: 10.3390/cells10010181
Orlandini, M. et al. Protein kinase CK2alpha’ is induced by serum as a delayed early gene and cooperates with Ha-ras in fibroblast transformation. J. Biol. Chem. 273, 21291–21297 (1998).
pubmed: 9694889 doi: 10.1074/jbc.273.33.21291
Deshiere, A. et al. Unbalanced expression of CK2 kinase subunits is sufficient to drive epithelial-to-mesenchymal transition by Snail1 induction. Oncogene 32, 1373–1383 (2013).
pubmed: 22562247 doi: 10.1038/onc.2012.165
Vilardell, J. et al. Under-expression of CK2β subunit in ccRCC represents a complementary biomarker of p-STAT3 Ser727 that correlates with patient survival. Oncotarget 9, 5736–5751 (2018).
pubmed: 29464030 doi: 10.18632/oncotarget.23422
Turowec, J. P., Vilk, G., Gabriel, M. & Litchfield, D. W. Characterizing the convergence of protein kinase CK2 and caspase-3 reveals isoform-specific phosphorylation of caspase-3 by CK2α′: implications for pathological roles of CK2 in promoting cancer cell survival. Oncotarget 4, 560–571 (2013).
pubmed: 23599180 pmcid: 3720604 doi: 10.18632/oncotarget.948
Di Maira, G. et al. Pharmacological inhibition of protein kinase CK2 reverts the multidrug resistance phenotype of a CEM cell line characterized by high CK2 level. Oncogene 26, 6915–6926 (2007).
pubmed: 17486073 doi: 10.1038/sj.onc.1210495
Di Maira, G. et al. Comparative analysis of CK2 expression and function in tumor cell lines displaying sensitivity vs. resistance to chemical induced apoptosis. Mol. Cell. Biochem. 316, 155–161 (2008).
pubmed: 18560764 doi: 10.1007/s11010-008-9813-6
Lettieri, A. et al. Protein kinase CK2 subunits differentially perturb the adhesion and migration of GN11 Cells: a model of immature migrating neurons. Int. J. Mol. Sci. 20, 5951 (2019).
Litchfield, D. W. et al. Functional specialization of CK2 isoforms and characterization of isoform-specific binding partners. Mol. Cell. Biochem. 227, 21–29 (2001).
pubmed: 11827170 doi: 10.1023/A:1013188101465
Villamañan, L. et al. Up-regulation of the alpha prime subunit of protein kinase CK2 as a marker of fast proliferation in GL261 cultured cells. Pathol. Oncol. Res. 25, 1659–1663 (2019).
pubmed: 30607803 doi: 10.1007/s12253-018-00567-z
Gray, G. K., McFarland, B. C., Rowse, A. L., Gibson, S. A. & Benveniste, E. N. Therapeutic CK2 inhibition attenuates diverse prosurvival signaling cascades and decreases cell viability in human breast cancer cells. Oncotarget 5, 6484–6496 (2014).
pubmed: 25153725 pmcid: 4171645 doi: 10.18632/oncotarget.2248
Silva, A. et al. Regulation of PTEN by CK2 and Notch1 in primary T-cell acute lymphoblastic leukemia: rationale for combined use of CK2- and gamma-secretase inhibitors. Haematologica 95, 674–678 (2010).
pubmed: 20015880 doi: 10.3324/haematol.2009.011999
Gomes, A. M. et al. Adult B-cell acute lymphoblastic leukemia cells display decreased PTEN activity and constitutive hyperactivation of PI3K/Akt pathway despite high PTEN protein levels. Haematologica 99, 1062–1068 (2014).
pubmed: 24561792 pmcid: 4040910 doi: 10.3324/haematol.2013.096438
Mishra, S. et al. Treatment of P190 Bcr/Abl lymphoblastic leukemia cells with inhibitors of the serine/threonine kinase CK2. Leukemia 21, 178–180 (2007).
pubmed: 17082777 doi: 10.1038/sj.leu.2404460
Kim, J. S. et al. Protein kinase CK2alpha as an unfavorable prognostic marker and novel therapeutic target in acute myeloid leukemia. Clin. Cancer Res. 13, 1019–1028 (2007).
pubmed: 17289898 doi: 10.1158/1078-0432.CCR-06-1602
Quotti Tubi, L. et al. Inhibition of protein kinase CK2 with the clinical-grade small ATP-competitive compound CX-4945 or by RNA interference unveils its role in acute myeloid leukemia cell survival, p53-dependent apoptosis and daunorubicin-induced cytotoxicity. J. Hematol. Oncol. 6, 78 (2013).
pubmed: 24283803 pmcid: 3852751 doi: 10.1186/1756-8722-6-78
Martins, L. R. et al. Targeting CK2 overexpression and hyperactivation as a novel therapeutic tool in chronic lymphocytic leukemia. Blood 116, 2724–2731 (2010).
pubmed: 20660292 doi: 10.1182/blood-2010-04-277947
Borgo, C. et al. Aberrant signalling by protein kinase CK2 in imatinib-resistant chronic myeloid leukaemia cells: biochemical evidence and therapeutic perspectives. Mol. Oncol. 7, 1103–1115 (2013).
pubmed: 24012109 pmcid: 5528438 doi: 10.1016/j.molonc.2013.08.006
Landesman-Bollag, E., Channavajhala, P. L., Cardiff, R. D. & Seldin, D. C. p53 deficiency and misexpression of protein kinase CK2alpha collaborate in the development of thymic lymphomas in mice. Oncogene 16, 2965–2974 (1998).
pubmed: 9662328 doi: 10.1038/sj.onc.1201854
Piazza, F. A. et al. Multiple myeloma cell survival relies on high activity of protein kinase CK2. Blood 108, 1698–1707 (2006).
pubmed: 16684960 doi: 10.1182/blood-2005-11-013672
Morotti, A. et al. Protein kinase CK2: a targetable BCR-ABL partner in philadelphia positive leukemias. Adv. Hematol. 2015, 612567 (2015).
pubmed: 26843864 pmcid: 4710905 doi: 10.1155/2015/612567
Piazza, F. et al. Protein kinase CK2 in hematologic malignancies: reliance on a pivotal cell survival regulator by oncogenic signaling pathways. Leukemia 26, 1174–1179 (2012).
pubmed: 22289987 doi: 10.1038/leu.2011.385
Piazza, F., Manni, S. & Semenzato, G. Novel players in multiple myeloma pathogenesis: role of protein kinases CK2 and GSK3. Leuk. Res. 37, 221–227 (2013).
pubmed: 23174190 doi: 10.1016/j.leukres.2012.10.016
Piazza, F. et al. New responsibilities for aged kinases in B-lymphomas. Hematol. Oncol. 38, 3–11 (2020).
pubmed: 31782972 doi: 10.1002/hon.2694
Agarwal, M., Nitta, R. T. & Li, G. Casein kinase 2: a novel player in glioblastoma therapy and cancer stem cells. J. Mol. Genet. Med. 8, 1000094 (2013).
Dubois, N. et al. Constitutive activation of casein kinase 2 in glioblastomas: absence of class restriction and broad therapeutic potential. Int. J. Oncol. 48, 2445–2452 (2016).
pubmed: 27098015 doi: 10.3892/ijo.2016.3490
Ferrer-Font, L. et al. Targeting protein kinase CK2: evaluating CX-4945 potential for GL261 glioblastoma therapy in immunocompetent mice. Pharmaceuticals 10, 24 (2017).
Rowse, A. L. et al. Protein kinase CK2 is important for the function of glioblastoma brain tumor initiating cells. J. Neurooncol. 132, 219–229 (2017).
pubmed: 28181105 pmcid: 5492387 doi: 10.1007/s11060-017-2378-z
Zheng, Y. et al. Targeting protein kinase CK2 suppresses prosurvival signaling pathways and growth of glioblastoma. Clin. Cancer Res. 19, 6484–6494 (2013).
pubmed: 24036851 pmcid: 3932633 doi: 10.1158/1078-0432.CCR-13-0265
Nitta, R. T. et al. Casein kinase 2 inhibition sensitizes medulloblastoma to temozolomide. Oncogene 38, 6867–6879 (2019).
pubmed: 31406250 pmcid: 6800621 doi: 10.1038/s41388-019-0927-y
Purzner, T. et al. Developmental phosphoproteomics identifies the kinase CK2 as a driver of Hedgehog signaling and a therapeutic target in medulloblastoma. Sci. Signal. 11, eaau5147 (2018).
Götz, C., Kartarius, S., Schetting, S. & Montenarh, M. Immunologically defined subclasses of the protein kinase CK2 beta-subunit in prostate carcinoma cell lines. Mol. Cell. Biochem. 274, 181–187 (2005).
pubmed: 16335537 doi: 10.1007/s11010-005-2950-2
Laramas, M. et al. Nuclear localization of protein kinase CK2 catalytic subunit (CK2alpha) is associated with poor prognostic factors in human prostate cancer. Eur. J. Cancer 43, 928–934 (2007).
pubmed: 17267203 doi: 10.1016/j.ejca.2006.11.021
Yenice, S. et al. Nuclear casein kinase 2 (CK-2) activity in human normal, benign hyperplastic, and cancerous prostate. Prostate 24, 11–16 (1994).
pubmed: 7507238 doi: 10.1002/pros.2990240105
Chatterjee, M. et al. Diagnostic markers of ovarian cancer by high-throughput antigen cloning and detection on arrays. Cancer Res. 66, 1181–1190 (2006).
pubmed: 16424057 pmcid: 2546578 doi: 10.1158/0008-5472.CAN-04-2962
Chen, L.-Y. et al. TET1 reprograms the epithelial ovarian cancer epigenome and reveals casein kinase 2α as a therapeutic target. J. Pathol. 248, 363–376 (2019).
pubmed: 30883733 pmcid: 6579655
Kulbe, H. et al. Integrated transcriptomic and proteomic analysis identifies protein kinase CK2 as a key signaling node in an inflammatory cytokine network in ovarian cancer cells. Oncotarget 7, 15648–15661 (2016).
pubmed: 26871292 pmcid: 4941267 doi: 10.18632/oncotarget.7255
Wong, A. S., Kim, S. O., Leung, P. C., Auersperg, N. & Pelech, S. L. Profiling of protein kinases in the neoplastic transformation of human ovarian surface epithelium. Gynecol. Oncol. 82, 305–311 (2001).
pubmed: 11531284 doi: 10.1006/gyno.2001.6280
Bae, J. S. et al. CK2α/CSNK2A1 phosphorylates SIRT6 and is involved in the progression of breast carcinoma and predicts shorter survival of diagnosed patients. Am. J. Pathol. 186, 3297–3315 (2016).
pubmed: 27746184 doi: 10.1016/j.ajpath.2016.08.007
Das, N., Datta, N., Chatterjee, U. & Ghosh, M. K. Estrogen receptor alpha transcriptionally activates casein kinase 2 alpha: A pivotal regulator of promyelocytic leukaemia protein (PML) and AKT in oncogenesis. Cell. Signal. 28, 675–687 (2016).
pubmed: 27012497 doi: 10.1016/j.cellsig.2016.03.007
Giusiano, S. et al. Protein kinase CK2α subunit over-expression correlates with metastatic risk in breast carcinomas: quantitative immunohistochemistry in tissue microarrays. Eur. J. Cancer 47, 792–801 (2011).
pubmed: 21194925 doi: 10.1016/j.ejca.2010.11.028
Landesman-Bollag, E. et al. Protein kinase CK2 in mammary gland tumorigenesis. Oncogene 20, 3247–3257 (2001).
pubmed: 11423974 doi: 10.1038/sj.onc.1204411
Williams, M. D., Nguyen, T., Carriere, P. P., Tilghman, S. L. & Williams, C. Protein kinase CK2 expression predicts relapse survival in ERα dependent breast cancer, and modulates ERα expression in vitro. Int. J. Environ. Res. Public Health 13, 36 (2016).
Daya-Makin, M. et al. Activation of a tumor-associated protein kinase (p40TAK) and casein kinase 2 in human squamous cell carcinomas and adenocarcinomas of the lung. Cancer Res. 54, 2262–2268 (1994).
pubmed: 7513612
Faust, R. A. et al. Elevated protein kinase CK2 activity in chromatin of head and neck tumors: association with malignant transformation. Cancer Lett. 101, 31–35 (1996).
pubmed: 8625279 doi: 10.1016/0304-3835(96)04110-9
O-charoenrat, P. et al. Casein kinase II alpha subunit and C1-inhibitor are independent predictors of outcome in patients with squamous cell carcinoma of the lung. Clin. Cancer Res. 10, 5792–5803 (2004).
pubmed: 15355908 doi: 10.1158/1078-0432.CCR-03-0317
Wang, Z. et al. Gene expression levels of CSNK1A1 and AAC-11, but not NME1, in tumor tissues as prognostic factors in NSCLC patients. Med. Sci. Monit. 16, CR357–364 (2010).
pubmed: 20671611
Yaylim, I. & Isbir, T. Enhanced casein kinase II (CK II) activity in human lung tumours. Anticancer Res. 22, 215–218 (2002).
pubmed: 12017291
Mitev, V., Miteva, L., Botev, I. & Houdebine, L. M. Enhanced casein kinase II activity in metastatic melanoma. J. Dermatol. Sci. 8, 45–49 (1994).
pubmed: 7947492 doi: 10.1016/0923-1811(94)90320-4
Zhou, B., Ritt, D. A., Morrison, D. K., Der, C. J. & Cox, A. D. Protein kinase CK2α maintains extracellular signal-regulated kinase (ERK) activity in a CK2α kinase-independent manner to promote resistance to inhibitors of RAF and MEK but not ERK in BRAF mutant melanoma. J. Biol. Chem. 291, 17804–17815 (2016).
pubmed: 27226552 pmcid: 5016172 doi: 10.1074/jbc.M115.712885
Rabjerg, M. et al. Nuclear localization of the CK2α-subunit correlates with poor prognosis in clear cell renal cell carcinoma. Oncotarget 8, 1613–1627 (2017).
pubmed: 27906674 doi: 10.18632/oncotarget.13693
Roelants, C. et al. in Protein Kinase CK2 Cellular Function in Normal and Disease States (eds Ahmed, K., Issinger, O.-G. & Szyszka, R.) 241–257 (Springer International Publishing, 2015).
Stalter, G. et al. Asymmetric expression of protein kinase CK2 subunits in human kidney tumors. Biochem. Biophys. Res. Commun. 202, 141–147 (1994).
pubmed: 8037705 doi: 10.1006/bbrc.1994.1904
Jia, Z.-M. et al. p21 and CK2 interaction-mediated HDAC2 phosphorylation modulates KLF4 acetylation to regulate bladder cancer cell proliferation. Tumour Biol. 37, 8293–8304 (2016).
pubmed: 26729194 doi: 10.1007/s13277-015-4618-1
Shimada, K., Anai, S., Marco, D. A., Fujimoto, K. & Konishi, N. Cyclooxygenase 2-dependent and independent activation of Akt through casein kinase 2α contributes to human bladder cancer cell survival. BMC Urol. 11, 8 (2011).
pubmed: 21592330 pmcid: 3111585 doi: 10.1186/1471-2490-11-8
Ortega, C. E., Seidner, Y. & Dominguez, I. Mining CK2 in cancer. PLoS ONE 9, e115609 (2014).
pubmed: 25541719 pmcid: 4277308 doi: 10.1371/journal.pone.0115609
Venkat, S. et al. Alternative polyadenylation drives oncogenic gene expression in pancreatic ductal adenocarcinoma. Genome Res. 30, 347–360 (2020).
pubmed: 32029502 pmcid: 7111527 doi: 10.1101/gr.257550.119
Zhou, F., Xu, J., Ding, G. & Cao, L. Overexpressions of CK2β and XIAP are associated with poor prognosis of patients with cholangiocarcinoma. Pathol. Oncol. Res. 20, 73–79 (2014).
pubmed: 23828693 doi: 10.1007/s12253-013-9660-y
Ko, H. et al. Protein kinase casein kinase 2-mediated upregulation of N-cadherin confers anoikis resistance on esophageal carcinoma cells. Mol. Cancer Res. 10, 1032–1038 (2012).
pubmed: 22767590 doi: 10.1158/1541-7786.MCR-12-0261
Yoo, J.-Y. et al. Nuclear hormone receptor corepressor promotes esophageal cancer cell invasion by transcriptional repression of interferon-γ-inducible protein 10 in a casein kinase 2-dependent manner. Mol. Biol. Cell 23, 2943–2954 (2012).
pubmed: 22675025 pmcid: 3408420 doi: 10.1091/mbc.e11-11-0947
Bae, J. S. et al. CK2α phosphorylates DBC1 and is involved in the progression of gastric carcinoma and predicts poor survival of gastric carcinoma patients. Int. J. Cancer 136, 797–809 (2015).
pubmed: 24962073 doi: 10.1002/ijc.29043
Jiang, C. et al. CSNK2A1 promotes gastric cancer invasion through the PI3K-Akt-mTOR signaling pathway. Cancer Manag. Res. 11, 10135–10143 (2019).
pubmed: 31819646 pmcid: 6897054 doi: 10.2147/CMAR.S222620
Lee, Y. S., Lee, D. Y., Yu, D. Y., Kim, S. & Lee, Y. C. Helicobacter pylori induces cell migration and invasion through casein kinase 2 in gastric epithelial cells. Helicobacter 19, 465–475 (2014).
pubmed: 25052887 doi: 10.1111/hel.12144
Lin, K.-Y. et al. Overexpression of nuclear protein kinase CK2 Beta subunit and prognosis in human gastric carcinoma. Ann. Surg. Oncol. 17, 1695–1702 (2010).
pubmed: 20087779 doi: 10.1245/s10434-010-0911-9
Khan, D. H. et al. Protein kinase CK2 regulates the dimerization of histone deacetylase 1 (HDAC1) and HDAC2 during mitosis. J. Biol. Chem. 288, 16518–16528 (2013).
pubmed: 23612983 pmcid: 3675587 doi: 10.1074/jbc.M112.440446
Kim, H. S. et al. Oncogenic potential of CK2α and its regulatory role in EGF-induced HDAC2 expression in human liver cancer. FEBS J. 281, 851–861 (2014).
pubmed: 24616922 doi: 10.1111/febs.12652
Yu, W. et al. The phosphorylation of SEPT2 on Ser218 by casein kinase 2 is important to hepatoma carcinoma cell proliferation. Mol. Cell. Biochem. 325, 61–67 (2009).
pubmed: 19165576 doi: 10.1007/s11010-008-0020-2
Zhang, H.-X. et al. Protein kinase CK2α catalytic subunit is overexpressed and serves as an unfavorable prognostic marker in primary hepatocellular carcinoma. Oncotarget 6, 34800–34817 (2015).
pubmed: 26430962 pmcid: 4741491 doi: 10.18632/oncotarget.5470
Zhang, S. et al. CK2α, over-expressed in human malignant pleural mesothelioma, regulates the Hedgehog signaling pathway in mesothelioma cells. J. Exp. Clin. Cancer Res. 33, 93 (2014).
pubmed: 25422081 pmcid: 4254219
Massimi, P., Pim, D., Kühne, C. & Banks, L. Regulation of the human papillomavirus oncoproteins by differential phosphorylation. Mol. Cell. Biochem. 227, 137–144 (2001).
pubmed: 11827165 doi: 10.1023/A:1013145814186
Sang, B. C. & Barbosa, M. S. Single amino acid substitutions in ‘low-risk’ human papillomavirus (HPV) type 6 E7 protein enhance features characteristic of the ‘high-risk’ HPV E7 oncoproteins. Proc. Natl Acad. Sci. USA 89, 8063–8067 (1992).
pubmed: 1325643 doi: 10.1073/pnas.89.17.8063
Tugizov, S. et al. Inhibition of human papillomavirus type 16 E7 phosphorylation by the S100 MRP-8/14 protein complex. J. Virol. 79, 1099–1112 (2005).
pubmed: 15613338 pmcid: 538578 doi: 10.1128/JVI.79.2.1099-1112.2005
Rydell, E. L., Axelsson, K. L., Olofsson, J. & Hellem, S. Protein kinase activities in neoplastic squamous epithelia and normal epithelia from the upper aero-digestive tract. Cancer Biochem. Biophys. 11, 187–194 (1990).
pubmed: 2268849
Chua, M. M. J. et al. CK2 in cancer: cellular and biochemical mechanisms and potential therapeutic target. Pharmaceuticals 10, 18 (2017).
Duncan, J. S. & Litchfield, D. W. Too much of a good thing: the role of protein kinase CK2 in tumorigenesis and prospects for therapeutic inhibition of CK2. Biochim. Biophys. Acta 1784, 33–47 (2008).
pubmed: 17931986 doi: 10.1016/j.bbapap.2007.08.017
Guerra, B. & Issinger, O.-G. Protein kinase CK2 in human diseases. Curr. Med. Chem. 15, 1870–1886 (2008).
pubmed: 18691045 doi: 10.2174/092986708785132933
Lian, H. et al. Protein kinase CK2, a potential therapeutic target in carcinoma management. Asian Pac. J. Cancer Prev. 20, 23–32 (2019).
pubmed: 30677865 pmcid: 6485562 doi: 10.31557/APJCP.2019.20.1.23
Chua, M. M. J., Lee, M. & Dominguez, I. Cancer-type dependent expression of CK2 transcripts. PLoS ONE 12, e0188854 (2017).
pubmed: 29206231 pmcid: 5714396 doi: 10.1371/journal.pone.0188854
Tawfic, S. et al. Protein kinase CK2 signal in neoplasia. Histol. Histopathol. 16, 573–582 (2001).
pubmed: 11332713
Luo, J., Solimini, N. L. & Elledge, S. J. Principles of cancer therapy: oncogene and non-oncogene addiction. Cell 136, 823–837 (2009).
pubmed: 19269363 pmcid: 2894612 doi: 10.1016/j.cell.2009.02.024
Lashuel, H. A., Overk, C. R., Oueslati, A. & Masliah, E. The many faces of α-synuclein: from structure and toxicity to therapeutic target. Nat. Rev. Neurosci. 14, 38–48 (2013).
pubmed: 23254192 pmcid: 4295774 doi: 10.1038/nrn3406
Oueslati, A. Implication of alpha-synuclein phosphorylation at S129 in synucleinopathies: what have we learned in the last decade? J. Parkinsons Dis. 6, 39–51 (2016).
Okochi, M. et al. Constitutive phosphorylation of the Parkinson’s disease associated alpha-synuclein. J. Biol. Chem. 275, 390–397 (2000).
pubmed: 10617630 doi: 10.1074/jbc.275.1.390
Ishii, A. et al. Casein kinase 2 is the major enzyme in brain that phosphorylates Ser129 of human alpha-synuclein: Implication for alpha-synucleinopathies. FEBS Lett. 581, 4711–4717 (2007).
pubmed: 17868672 doi: 10.1016/j.febslet.2007.08.067
Inglis, K. J. et al. Polo-like kinase 2 (PLK2) phosphorylates alpha-synuclein at serine 129 in central nervous system. J. Biol. Chem. 284, 2598–2602 (2009).
pubmed: 19004816 pmcid: 2631975 doi: 10.1074/jbc.C800206200
Mbefo, M. K. et al. Phosphorylation of synucleins by members of the Polo-like kinase family. J. Biol. Chem. 285, 2807–2822 (2010).
pubmed: 19889641 doi: 10.1074/jbc.M109.081950
Salvi, M., Sarno, S., Cesaro, L., Nakamura, H. & Pinna, L. A. Extraordinary pleiotropy of protein kinase CK2 revealed by weblogo phosphoproteome analysis. Biochim. Biophys. Acta 1793, 847–859 (2009).
pubmed: 19339213 doi: 10.1016/j.bbamcr.2009.01.013
Salvi, M. et al. Investigation on PLK2 and PLK3 substrate recognition. Biochim. Biophys. Acta 1824, 1366–1373 (2012).
pubmed: 22828320 doi: 10.1016/j.bbapap.2012.07.003
Cozza, G. & Salvi, M. The acidophilic kinases PLK2 and PLK3: structure, substrate targeting and inhibition. Curr. Protein Pept. Sci. 19, 728–745 (2018).
pubmed: 29366414 doi: 10.2174/1389203719666180124095405
Salvi, M. et al. Tools to discriminate between targets of CK2 vs PLK2/PLK3 acidophilic kinases. BioTechniques 52, 1–5 (2012).
Bergeron, M. et al. In vivo modulation of polo-like kinases supports a key role for PLK2 in Ser129 α-synuclein phosphorylation in mouse brain. Neuroscience 256, 72–82 (2014).
pubmed: 24128992 doi: 10.1016/j.neuroscience.2013.09.061
O’Brien, R. J. & Wong, P. C. Amyloid precursor protein processing and Alzheimer’s disease. Annu. Rev. Neurosci. 34, 185–204 (2011).
pubmed: 21456963 pmcid: 3174086 doi: 10.1146/annurev-neuro-061010-113613
Zhang, Q. et al. CK2 phosphorylating I2PP2A/SET mediates tau pathology and cognitive impairment. Front. Mol. Neurosci. 11, 146 (2018).
Rosenberger, A. F. N. et al. Increased occurrence of protein kinase CK2 in astrocytes in Alzheimer’s disease pathology. J. Neuroinflammation 13, 4 (2016).
pubmed: 26732432 pmcid: 4702323 doi: 10.1186/s12974-015-0470-x
Chauhan, A., Chauhan, V. P., Murakami, N., Brockerhoff, H. & Wisniewski, H. M. Amyloid beta-protein stimulates casein kinase I and casein kinase II activities. Brain Res. 629, 47–52 (1993).
pubmed: 8287280 doi: 10.1016/0006-8993(93)90479-7
Walter, J. et al. The Alzheimer’s disease-associated presenilins are differentially phosphorylated proteins located predominantly within the endoplasmic reticulum. Mol. Med. 2, 673–691 (1996).
pubmed: 8972483 pmcid: 2230134 doi: 10.1007/BF03401652
Sannerud, R. et al. Restricted location of PSEN2/γ-secretase determines substrate specificity and generates an intracellular Aβ pool. Cell 166, 193–208 (2016).
pubmed: 27293189 pmcid: 7439524 doi: 10.1016/j.cell.2016.05.020
Lenzken, S. C. et al. Recruitment of casein kinase 2 is involved in AbetaPP processing following cholinergic stimulation. J. Alzheimers Dis. 20, 1133–1141 (2010).
pubmed: 20413902 doi: 10.3233/JAD-2010-090232
Pimenova, A. A., Thathiah, A., Strooper, B. D. & Tesseur, I. Regulation of amyloid precursor protein processing by serotonin signaling. PLOS ONE 9, e87014 (2014).
pubmed: 24466315 pmcid: 3897773 doi: 10.1371/journal.pone.0087014
Kanaan, N. M. et al. Axonal degeneration in Alzheimer’s disease: when signaling abnormalities meet the axonal transport system. Exp. Neurol. 246, 44–53 (2013).
pubmed: 22721767 doi: 10.1016/j.expneurol.2012.06.003
Pigino, G. et al. Disruption of fast axonal transport is a pathogenic mechanism for intraneuronal amyloid beta. Proc. Natl Acad. Sci. USA 106, 5907–5912 (2009).
pubmed: 19321417 doi: 10.1073/pnas.0901229106
Tabrizi, S. J., Flower, M. D., Ross, C. A. & Wild, E. J. Huntington disease: new insights into molecular pathogenesis and therapeutic opportunities. Nat. Rev. Neurol. 16, 529–546 (2020).
pubmed: 32796930 doi: 10.1038/s41582-020-0389-4
Fan, M. M. Y., Zhang, H., Hayden, M. R., Pelech, S. L. & Raymond, L. A. Protective up-regulation of CK2 by mutant huntingtin in cells co-expressing NMDA receptors. J. Neurochem. 104, 790–805 (2008).
pubmed: 17971125
Atwal, R. S. et al. Kinase inhibitors modulate huntingtin cell localization and toxicity. Nat. Chem. Biol. 7, 453–460 (2011).
pubmed: 21623356 doi: 10.1038/nchembio.582
Bowie, L. E. et al. N6-Furfuryladenine is protective in Huntington’s disease models by signaling huntingtin phosphorylation. Proc. Natl Acad. Sci. USA 115, E7081–E7090 (2018).
pubmed: 29987005 doi: 10.1073/pnas.1801772115
Tao, R.-S., Fei, E.-K., Ying, Z., Wang, H.-F. & Wang, G.-H. Casein kinase 2 interacts with and phosphorylates ataxin-3. Neurosci. Bull. 24, 271–277 (2008).
pubmed: 18839019 pmcid: 5552532 doi: 10.1007/s12264-008-0605-5
Mueller, T. et al. CK2-dependent phosphorylation determines cellular localization and stability of ataxin-3. Hum. Mol. Genet. 18, 3334–3343 (2009).
pubmed: 19542537 doi: 10.1093/hmg/ddp274
Pastori, V. et al. CK2 and GSK3 phosphorylation on S29 controls wild-type ATXN3 nuclear uptake. Biochim. Biophys. Acta 1802, 583–592 (2010).
pubmed: 20347968 doi: 10.1016/j.bbadis.2010.03.007
Shenouda, M., Zhang, A. B., Weichert, A. & Robertson, J. Mechanisms associated with TDP-43 neurotoxicity in ALS/FTLD. Adv. Neurobiol. 20, 239–263 (2018).
pubmed: 29916022 doi: 10.1007/978-3-319-89689-2_9
Buratti, E. TDP-43 post-translational modifications in health and disease. Expert Opin. Ther. Targets 22, 279–293 (2018).
pubmed: 29431050 doi: 10.1080/14728222.2018.1439923
Li, H.-Y., Yeh, P.-A., Chiu, H.-C., Tang, C.-Y. & Tu, B. P. Hyperphosphorylation as a defense mechanism to reduce TDP-43 aggregation. PLoS ONE 6, e23075 (2011).
pubmed: 21850253 pmcid: 3151276 doi: 10.1371/journal.pone.0023075
Hasegawa, M. et al. Phosphorylated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Ann. Neurol. 64, 60–70 (2008).
pubmed: 18546284 pmcid: 2674108 doi: 10.1002/ana.21425
Iguchi, Y. et al. Oxidative stress induced by glutathione depletion reproduces pathological modifications of TDP-43 linked to TDP-43 proteinopathies. Neurobiol. Dis. 45, 862–870 (2012).
pubmed: 22198567 doi: 10.1016/j.nbd.2011.12.002
Lee, A. et al. Casein kinase II phosphorylation of cyclin F at serine 621 regulates the Lys48-ubiquitylation E3 ligase activity of the SCF(cyclin F) complex. Open Biol. 7, 170058 (2017).
Ottaviani, D. et al. Protein kinase CK2 modulates HSJ1 function through phosphorylation of the UIM2 domain. Hum. Mol. Genet. 26, 611–623 (2017).
pubmed: 28031292
Yadikar, H. et al. Screening of tau protein kinase inhibitors in a tauopathy-relevant cell-based model of tau hyperphosphorylation and oligomerization. PLoS ONE 15, e0224952 (2020).
pubmed: 32692785 pmcid: 7373298 doi: 10.1371/journal.pone.0224952
Firzlaff, J. M., Galloway, D. A., Eisenman, R. N. & Lüscher, B. The E7 protein of human papillomavirus type 16 is phosphorylated by casein kinase II. N. Biol. 1, 44–53 (1989).
Meggio, F., D’Agostino, D. M., Ciminale, V., Chieco-Bianchi, L. & Pinna, L. A. Phosphorylation of HIV-1 Rev protein: implication of protein kinase CK2 and pro-directed kinases. Biochem. Biophys. Res. Commun. 226, 547–554 (1996).
pubmed: 8806671 doi: 10.1006/bbrc.1996.1392
Dal Pero, F. et al. Heterogeneity of CK2 phosphorylation sites in the NS5A protein of different hepatitis C virus genotypes. J. Hepatol. 47, 768–776 (2007).
pubmed: 17923166 doi: 10.1016/j.jhep.2007.07.020
Schwartz, E. I., Intine, R. V. & Maraia, R. J. CK2 is responsible for phosphorylation of human La protein serine-366 and can modulate rpL37 5′-terminal oligopyrimidine mRNA metabolism. Mol. Cell. Biol. 24, 9580–9591 (2004).
pubmed: 15485924 pmcid: 522270 doi: 10.1128/MCB.24.21.9580-9591.2004
Davis, K. A., Morelli, M. & Patton, J. T. Rotavirus NSP1 requires casein kinase II-mediated phosphorylation for hijacking of cullin-RING ligases. mBio 8, e01213-17 (2017).
Yoon, J.-J., Lee, Y.-T., Chu, H., Son, S. & Kim, M. Phosphorylation of the nucleocapsid protein of Hantaan virus by casein kinase II. J. Microbiol. 53, 343–347 (2015).
pubmed: 25935306 doi: 10.1007/s12275-015-5095-3
Bajorek, M. et al. The Thr205 phosphorylation site within respiratory syncytial virus matrix (M) protein modulates M oligomerization and virus production. J. Virol. 88, 6380–6393 (2014).
pubmed: 24672034 pmcid: 4093874 doi: 10.1128/JVI.03856-13
Basta, H. A., Bacot-Davis, V. R., Ciomperlik, J. J. & Palmenberg, A. C. Encephalomyocarditis virus leader is phosphorylated by CK2 and syk as a requirement for subsequent phosphorylation of cellular nucleoporins. J. Virol. 88, 2219–2226 (2014).
pubmed: 24335301 pmcid: 3911527 doi: 10.1128/JVI.03150-13
Majerciak, V. et al. Stability of structured Kaposi’s sarcoma-associated herpesvirus ORF57 protein is regulated by protein phosphorylation and homodimerization. J. Virol. 89, 3256–3274 (2015).
pubmed: 25568207 pmcid: 4337553 doi: 10.1128/JVI.03721-14
Du, M. et al. Casein kinase II controls TBK1/IRF3 activation in IFN response against viral infection. J. Immunol. 194, 4477–4488 (2015).
pubmed: 25810395 doi: 10.4049/jimmunol.1402777
Chen, I.-Y. et al. Upregulation of the chemokine (C-C motif) ligand 2 via a severe acute respiratory syndrome coronavirus spike-ACE2 signaling pathway. J. Virol. 84, 7703–7712 (2010).
pubmed: 20484496 pmcid: 2897593 doi: 10.1128/JVI.02560-09
Gordon, D. E. et al. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature 583, 459–468 (2020).
Bouhaddou, M. et al. The global phosphorylation landscape of SARS-CoV-2 infection. Cell 182, 685–712 (2020).
Mak, E. Taiwan’s Senhwa advancing CK2 candidate against moderate COVID-19. https://www.bioworld.com/articles/496463-taiwans-senhwa-advancing-ck2-candidate-against-moderate-covid-19?v=preview .
Kweon, S.-M. et al. Synergistic activation of NF-kappaB by nontypeable H. influenzae and S. pneumoniae is mediated by CK2, IKKbeta-IkappaBalpha, and p38 MAPK. Biochem. Biophys. Res. Commun. 351, 368–375 (2006).
pubmed: 17064662 pmcid: 3345030 doi: 10.1016/j.bbrc.2006.10.052
Källström, H., Islam, M. S., Berggren, P. O. & Jonsson, A. B. Cell signaling by the type IV pili of pathogenic Neisseria. J. Biol. Chem. 273, 21777–21782 (1998).
pubmed: 9705315 doi: 10.1074/jbc.273.34.21777
Chong, R. et al. Regulatory mimicry in Listeria monocytogenes actin-based motility. Cell Host Microbe 6, 268–278 (2009).
pubmed: 19748468 pmcid: 2752869 doi: 10.1016/j.chom.2009.08.006
Chiang, L. Y. et al. Candida albicans protein kinase CK2 governs virulence during oropharyngeal candidiasis. Cell. Microbiol. 9, 233–245 (2007).
pubmed: 16939537 doi: 10.1111/j.1462-5822.2006.00784.x
ole-MoiYoi, O. K. Casein kinase II in theileriosis. Science 267, 834–836 (1995).
pubmed: 7846527 doi: 10.1126/science.7846527
Vieira, L. L., Sacerdoti-Sierra, N. & Jaffe, C. L. Effect of pH and temperature on protein kinase release by Leishmania donovani. Int. J. Parasitol. 32, 1085–1093 (2002).
pubmed: 12117491 doi: 10.1016/S0020-7519(02)00067-X
Zylbersztejn, A. M. B. et al. CK2 secreted by Leishmania braziliensis mediates macrophage association invasion: a comparative study between virulent and avirulent promastigotes. Biomed. Res. Int. 2015, 167323 (2015).
pubmed: 26120579 pmcid: 4450227 doi: 10.1155/2015/167323
Dutra, P. M. L., Vieira, D. P., Meyer-Fernandes, J. R., Silva-Neto, M. A. C. & Lopes, A. H. Stimulation of Leishmania tropica protein kinase CK2 activities by platelet-activating factor (PAF). Acta Trop. 111, 247–254 (2009).
pubmed: 19433049 doi: 10.1016/j.actatropica.2009.05.002
Augustine, S. A. J. et al. Molecular cloning of a Trypanosoma cruzi cell surface casein kinase II substrate, Tc-1, involved in cellular infection. Infect. Immun. 74, 3922–3929 (2006).
pubmed: 16790765 pmcid: 1489715 doi: 10.1128/IAI.00045-06
de Abreu da Silva, I. C. et al. CK2 phosphorylation of Schistosoma mansoni HMGB1 protein regulates its cellular traffic and secretion but not its DNA transactions. PLoS ONE 6, e23572 (2011).
pubmed: 21887276 pmcid: 3160966 doi: 10.1371/journal.pone.0023572
Delorme, V., Cayla, X., Faure, G., Garcia, A. & Tardieux, I. Actin dynamics is controlled by a casein kinase II and phosphatase 2C interplay on Toxoplasma gondii Toxofilin. Mol. Biol. Cell 14, 1900–1912 (2003).
pubmed: 12802063 pmcid: 165085 doi: 10.1091/mbc.e02-08-0462
Holland, Z., Prudent, R., Reiser, J.-B., Cochet, C. & Doerig, C. Functional analysis of protein kinase CK2 of the human malaria parasite Plasmodium falciparum. Eukaryot. Cell 8, 388–397 (2009).
pubmed: 19114502 doi: 10.1128/EC.00334-08
Hora, R., Bridges, D. J., Craig, A. & Sharma, A. Erythrocytic casein kinase II regulates cytoadherence of Plasmodium falciparum-infected red blood cells. J. Biol. Chem. 284, 6260–6269 (2009).
pubmed: 19131328 pmcid: 2649111 doi: 10.1074/jbc.M809756200
Kramerov, A. A. et al. Inhibition of protein kinase CK2 suppresses angiogenesis and hematopoietic stem cell recruitment to retinal neovascularization sites. Mol. Cell. Biochem. 316, 177–186 (2008).
pubmed: 18612802 pmcid: 2913688 doi: 10.1007/s11010-008-9831-4
Ljubimov, A. V. et al. Involvement of protein kinase CK2 in angiogenesis and retinal neovascularization. Invest. Ophthalmol. Vis. Sci. 45, 4583–4591 (2004).
pubmed: 15557471 pmcid: 2917328 doi: 10.1167/iovs.04-0686
Morooka, S. et al. Identification of a dual inhibitor of SRPK1 and CK2 that attenuates pathological angiogenesis of macular degeneration in mice. Mol. Pharmacol. 88, 316–325 (2015).
pubmed: 25993998 doi: 10.1124/mol.114.097345
Cen, L.-P. et al. Casein kinase-II inhibition promotes retinal ganglion cell survival and axonal regeneration. Exp. Eye Res. 177, 153–159 (2018).
pubmed: 30118655 doi: 10.1016/j.exer.2018.08.010
Trojan, P. et al. Light-dependent CK2-mediated phosphorylation of centrins regulates complex formation with visual G-protein. Biochim. Biophys. Acta 1783, 1248–1260 (2008).
pubmed: 18269917 doi: 10.1016/j.bbamcr.2008.01.006
Carneiro, A. C. D., Fragel-Madeira, L., Silva-Neto, M. A. & Linden, R. A role for CK2 upon interkinetic nuclear migration in the cell cycle of retinal progenitor cells. Dev. Neurobiol. 68, 620–631 (2008).
pubmed: 18278803 doi: 10.1002/dneu.20613
Burgel, P.-R. et al. Future trends in cystic fibrosis demography in 34 European countries. Eur. Respir. J. 46, 133–141 (2015).
pubmed: 25792639 doi: 10.1183/09031936.00196314
Elborn, J. S. Cystic fibrosis. Lancet 388, 2519–2531 (2016).
pubmed: 27140670 doi: 10.1016/S0140-6736(16)00576-6
Saint-Criq, V. & Gray, M. A. Role of CFTR in epithelial physiology. Cell. Mol. Life Sci. 74, 93–115 (2017).
pubmed: 27714410 doi: 10.1007/s00018-016-2391-y
Heda, G. D., Tanwani, M. & Marino, C. R. The Delta F508 mutation shortens the biochemical half-life of plasma membrane CFTR in polarized epithelial cells. Am. Am. J. Physiol., Cell Physiol. 280, C166–174 (2001).
doi: 10.1152/ajpcell.2001.280.1.C166
McClure, M. L., Barnes, S., Brodsky, J. L. & Sorscher, E. J. Trafficking and function of the cystic fibrosis transmembrane conductance regulator: a complex network of posttranslational modifications. Am. J. Physiol. Lung Cell Mol. Physiol. 311, L719–L733 (2016).
pubmed: 27474090 pmcid: 5142128 doi: 10.1152/ajplung.00431.2015
Pankow, S., Bamberger, C. & Yates, J. R. A posttranslational modification code for CFTR maturation is altered in cystic fibrosis. Sci Signal 12, (2019).
Treharne, K. J. et al. Inhibition of protein kinase CK2 closes the CFTR Cl channel, but has no effect on the cystic fibrosis mutant deltaF508-CFTR. Cell. Physiol. Biochem. 24, 347–360 (2009).
pubmed: 19910675 pmcid: 2795324 doi: 10.1159/000257427
Tosco, A. et al. A novel treatment of cystic fibrosis acting on-target: cysteamine plus epigallocatechin gallate for the autophagy-dependent rescue of class II-mutated CFTR. Cell Death Differ. 23, 1380–1393 (2016).
pubmed: 27035618 pmcid: 4947669 doi: 10.1038/cdd.2016.22
Pagano, M. A. et al. Modulation of protein kinase CK2 activity by fragments of CFTR encompassing F508 may reflect functional links with cystic fibrosis pathogenesis. Biochemistry 47, 7925–7936 (2008).
pubmed: 18597485 pmcid: 2774623 doi: 10.1021/bi800316z
Venerando, A. et al. Understanding protein kinase CK2 mis-regulation upon F508del CFTR expression. Naunyn Schmiedebergs Arch. Pharmacol. 384, 473–488 (2011).
pubmed: 21607646 pmcid: 3208816 doi: 10.1007/s00210-011-0650-x
D’Amore, C. et al. Deciphering the role of protein kinase CK2 in the maturation/stability of F508del-CFTR. Biochim Biophys Acta Mol Basis Dis 165611 (2019), https://doi.org/10.1016/j.bbadis.2019.165611 .
Ibrahim, S. H. et al. CK2 is a key regulator of SLC4A2-mediated Cl−/HCO3− exchange in human airway epithelia. Pflug. Arch. 469, 1073–1091 (2017).
doi: 10.1007/s00424-017-1981-3
Pinto, M. C. et al. Regulation of TMEM16A by CK2 and Its Role in Cellular Proliferation. Cells 9, (2020).
Gao, Z. et al. An AUTS2-Polycomb complex activates gene expression in the CNS. Nature 516, 349–354 (2014).
pubmed: 25519132 pmcid: 4323097 doi: 10.1038/nature13921
Bartley, C. M. et al. Mammalian FMRP S499 Is Phosphorylated by CK2 and Promotes Secondary Phosphorylation of FMRP. eNeuro 3, (2016).
Kajiwara, Y., Buxbaum, J. D. & Grice, D. E. SLITRK1 Binds 14-3-3 and Regulates Neurite Outgrowth in a Phosphorylation-Dependent Manner. Biol. Psychiatry 66, 918–925 (2009).
pubmed: 19640509 doi: 10.1016/j.biopsych.2009.05.033
Aksenova, M. V., Burbaeva, G. S., Kandror, K. V., Kapkov, D. V. & Stepanov, A. S. The decreased level of casein kinase 2 in brain cortex of schizophrenic and Alzheimer’s disease patients. FEBS Lett. 279, 55–57 (1991).
pubmed: 1995343 doi: 10.1016/0014-5793(91)80249-3
Castillo, M. A., Ghose, S., Tamminga, C. A. & Ulery-Reynolds, P. G. Deficits in syntaxin 1 phosphorylation in schizophrenia prefrontal cortex. Biol. Psychiatry 67, 208–216 (2010).
pubmed: 19748077 doi: 10.1016/j.biopsych.2009.07.029
Castello, J. et al. CK2 regulates 5-HT4 receptor signaling and modulates depressive-like behavior. Mol. Psychiatry 23, 872–882 (2018).
pubmed: 29158580 doi: 10.1038/mp.2017.240
Okur, V. et al. De novo mutations in CSNK2A1 are associated with neurodevelopmental abnormalities and dysmorphic features. Hum. Genet. 135, 699–705 (2016).
pubmed: 27048600 doi: 10.1007/s00439-016-1661-y
Trinh, J. et al. A novel de novo mutation in CSNK2A1: reinforcing the link to neurodevelopmental abnormalities and dysmorphic features. J. Hum. Genet. 62, 1005–1006 (2017).
pubmed: 28725024 doi: 10.1038/jhg.2017.73
Chiu, A. T. G. et al. Okur-Chung neurodevelopmental syndrome: Eight additional cases with implications on phenotype and genotype expansion. Clin. Genet. 93, 880–890 (2018).
pubmed: 29240241 doi: 10.1111/cge.13196
Owen, C. I. et al. Extending the phenotype associated with the CSNK2A1-related Okur-Chung syndrome-A clinical study of 11 individuals. Am. J. Med. Genet. A 176, 1108–1114 (2018).
pubmed: 29383814 doi: 10.1002/ajmg.a.38610
Akahira-Azuma, M., Tsurusaki, Y., Enomoto, Y., Mitsui, J. & Kurosawa, K. Refining the clinical phenotype of Okur-Chung neurodevelopmental syndrome. Hum. Genome Var. 5, 18011 (2018).
pubmed: 29619237 pmcid: 5874396 doi: 10.1038/hgv.2018.11
Costa, R. et al. The lysine-specific demethylase 1 is a novel substrate of protein kinase CK2. Biochim. Biophys. Acta 1844, 722–729 (2014).
pubmed: 24486797 doi: 10.1016/j.bbapap.2014.01.014
Colavito, D. et al. Are CSNK2A1 gene mutations associated with retinal dystrophy? Report of a patient carrier of a novel de novo splice site mutation. J. Hum. Genet. 63, 779–781 (2018).
pubmed: 29568000 doi: 10.1038/s10038-018-0434-y
Martinez-Monseny, A. F. et al. Okur-Chung neurodevelopmental syndrome in a patient from Spain. Am. J. Med. Genet. A 182, 20–24 (2020).
pubmed: 31729156 doi: 10.1002/ajmg.a.61405
Xu, S., Lian, Q., Wu, J., Li, L. & Song, J. Dual molecular diagnosis of tricho-rhino-phalangeal syndrome type I and Okur-Chung neurodevelopmental syndrome in one Chinese patient: a case report. BMC Med. Genet. 21, 158 (2020).
pubmed: 32746809 pmcid: 7398275 doi: 10.1186/s12881-020-01096-w
Nakashima, M. et al. Identification of de novo CSNK2A1 and CSNK2B variants in cases of global developmental delay with seizures. J. Hum. Genet. 64, 313–322 (2019).
pubmed: 30655572 doi: 10.1038/s10038-018-0559-z
Poirier, K. et al. CSNK2B splice site mutations in patients cause intellectual disability with or without myoclonic epilepsy. Hum. Mutat. 38, 932–941 (2017).
pubmed: 28585349 doi: 10.1002/humu.23270
Sakaguchi, Y., Uehara, T., Suzuki, H., Kosaki, K. & Takenouchi, T. Truncating mutation in CSNK2B and myoclonic epilepsy. Hum. Mutat. 38, 1611–1612 (2017).
pubmed: 28762608 doi: 10.1002/humu.23307
Li, J. et al. Germline de novo variants in CSNK2B in Chinese patients with epilepsy. Sci. Rep. 9, 17909 (2019).
pubmed: 31784560 pmcid: 6884442 doi: 10.1038/s41598-019-53484-9
Cho, N. H. et al. IDF Diabetes Atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res. Clin. Pract. 138, 271–281 (2018).
pubmed: 29496507 doi: 10.1016/j.diabres.2018.02.023
Association, A. D. 2. Classification and diagnosis of diabetes: standards of medical care in diabetes—2019. Diabetes Care 42, S13–S28 (2019).
doi: 10.2337/dc19-S002
Ampofo, E., Nalbach, L., Menger, M. D., Montenarh, M. & Götz, C. Protein kinase CK2-A putative target for the therapy of diabetes mellitus? Int. J. Mol. Sci. 20, 4398 (2019).
Martos, C., Plana, M., Guasch, M. D. & Itarte, E. Effect of starvation, diabetes and insulin on the casein kinase 2 from rat liver cytosol. Biochem. J. 225, 321–326 (1985).
pubmed: 3883988 pmcid: 1144593 doi: 10.1042/bj2250321
Metallo, A. & Villa-Moruzzi, E. Protein phosphatase-1 and -2A, kinase FA, and casein kinase II in skeletal muscle of streptozotocin diabetic rats. Arch. Biochem. Biophys. 289, 382–386 (1991).
pubmed: 1654859 doi: 10.1016/0003-9861(91)90427-K
Sacco, F. et al. Glucose-regulated and drug-perturbed phosphoproteome reveals molecular mechanisms controlling insulin secretion. Nat. Commun. 7, 13250 (2016).
pubmed: 27841257 pmcid: 5114537 doi: 10.1038/ncomms13250
Tuncay, E. et al. Hyperglycemia-induced changes in ZIP7 and ZnT7 expression cause Zn2+ release from the sarco(endo)plasmic reticulum and mediate ER stress in the heart. Diabetes 66, 1346–1358 (2017).
pubmed: 28232492 doi: 10.2337/db16-1099
Bitirim, C. V., Tuncay, E. & Turan, B. Demonstration of subcellular migration of CK2α localization from nucleus to sarco(endo)plasmic reticulum in mammalian cardiomyocytes under hyperglycemia. Mol. Cell. Biochem. 443, 25–36 (2018).
pubmed: 29058176 doi: 10.1007/s11010-017-3207-6
Iori, E. et al. Effects of CK2 inhibition in cultured fibroblasts from Type 1 Diabetic patients with or without nephropathy. Growth Factors 33, 259–266 (2015).
pubmed: 26340273 doi: 10.3109/08977194.2015.1073725
Huang, J. et al. Protein kinase CK2α catalytic subunit ameliorates diabetic renal inflammatory fibrosis via NF-κB signaling pathway. Biochem. Pharmacol. 132, 102–117 (2017).
pubmed: 28237649 doi: 10.1016/j.bcp.2017.02.016
Huang, J. et al. Sphingosine kinase 1 mediates diabetic renal fibrosis via NF-κB signaling pathway: involvement of CK2α. Oncotarget 8, 88988–89004 (2017).
pubmed: 29179493 pmcid: 5687663 doi: 10.18632/oncotarget.21640
Marselli, L. et al. Gene expression profiles of Beta-cell enriched tissue obtained by laser capture microdissection from subjects with type 2 diabetes. PLoS ONE 5, e11499 (2010).
pubmed: 20644627 pmcid: 2903480 doi: 10.1371/journal.pone.0011499
Lan, Y.-C. et al. Effects of casein kinase 2 alpha 1 gene expression on mice liver susceptible to type 2 diabetes mellitus and obesity. Int J. Med. Sci. 17, 13–20 (2020).
pubmed: 31929734 pmcid: 6945564 doi: 10.7150/ijms.37110
Roher, N. et al. Protein kinase CK2 is altered in insulin-resistant genetically obese (fa/fa) rats. FEBS Lett. 437, 211–215 (1998).
pubmed: 9824292 doi: 10.1016/S0014-5793(98)01230-7
Borgo, C. et al. CK2 modulates adipocyte insulin-signaling and is up-regulated in human obesity. Sci. Rep. 7, 17569 (2017).
pubmed: 29242563 pmcid: 5730587 doi: 10.1038/s41598-017-17809-w
Shinoda, K. et al. Phosphoproteomics identifies CK2 as a negative regulator of beige adipocyte thermogenesis and energy expenditure. Cell Metab. 22, 997–1008 (2015).
pubmed: 26525534 pmcid: 4670581 doi: 10.1016/j.cmet.2015.09.029
Schwind, L. et al. Protein kinase CK2 is necessary for the adipogenic differentiation of human mesenchymal stem cells. Biochim. Biophys. Acta 1853, 2207–2216 (2015).
pubmed: 26025678 doi: 10.1016/j.bbamcr.2015.05.023
Schwind, L., Schetting, S. & Montenarh, M. Inhibition of protein kinase CK2 prevents adipogenic differentiation of mesenchymal stem cells like C3H/10T1/2 Cells. Pharmaceuticals 10, 22 (2017).
Chen, Q. et al. SIRT6 is essential for adipocyte differentiation by regulating mitotic clonal expansion. Cell Rep. 18, 3155–3166 (2017).
pubmed: 28355567 doi: 10.1016/j.celrep.2017.03.006
Schäfer, B. et al. KIF5C: a new binding partner for protein kinase CK2 with a preference for the CK2alpha’ subunit. Cell. Mol. Life Sci. 66, 339–349 (2009).
pubmed: 19011756 doi: 10.1007/s00018-008-8478-3
Sanna, M. et al. White adipose tissue expansion in multiple symmetric lipomatosis is associated with upregulation of CK2, AKT and ERK1/2. Int. J. Mol. Sci. 21, 7933 (2020).
Sommercorn, J., Mulligan, J. A., Lozeman, F. J. & Krebs, E. G. Activation of casein kinase II in response to insulin and to epidermal growth factor. Proc. Natl Acad. Sci. USA 84, 8834–8838 (1987).
pubmed: 3321056 doi: 10.1073/pnas.84.24.8834
Klarlund, J. K. & Czech, M. P. Insulin-like growth factor I and insulin rapidly increase casein kinase II activity in BALB/c 3T3 fibroblasts. J. Biol. Chem. 263, 15872–15875 (1988).
pubmed: 3053682 doi: 10.1016/S0021-9258(18)37530-6
Pérez, M., Grande, J. & Itarte, E. Casein kinase 2 activity increases in the prereplicative phase of liver regeneration. FEBS Lett. 238, 273–276 (1988).
pubmed: 3169262 doi: 10.1016/0014-5793(88)80495-2
Grande, J., Pérez, M., Plana, M. & Itarte, E. Acute effects of insulin and glucagon on hepatic casein kinase 2 in adult fed rats: correlation of the effects on casein kinase 2 with the changes in glycogen synthase activity. Arch. Biochem. Biophys. 275, 478–485 (1989).
pubmed: 2512856 doi: 10.1016/0003-9861(89)90394-9
Maeda, R., Raz, I., Zurlo, F. & Sommercorn, J. Activation of skeletal muscle casein kinase II by insulin is not diminished in subjects with insulin resistance. J. Clin. Investig. 87, 1017–1022 (1991).
pubmed: 1999482 doi: 10.1172/JCI115060
Hei, Y. J. et al. Characterization of insulin-stimulated seryl/threonyl protein kinases in rat skeletal muscle. J. Biol. Chem. 268, 13203–13213 (1993).
pubmed: 8514759 doi: 10.1016/S0021-9258(19)38638-7
Kim, S. J. & Kahn, C. R. Insulin regulation of mitogen-activated protein kinase kinase (MEK), mitogen-activated protein kinase and casein kinase in the cell nucleus: a possible role in the regulation of gene expression. Biochem. J. 323, 621–627 (1997).
pubmed: 9169593 pmcid: 1218363 doi: 10.1042/bj3230621
Litchfield, D. W., Dobrowolska, G. & Krebs, E. G. Regulation of casein kinase II by growth factors: a reevaluation. Cell. Mol. Biol. Res. 40, 373–381 (1994).
pubmed: 7735311
Meng, R. et al. CK2 phosphorylation of Pdx-1 regulates its transcription factor activity. Cell. Mol. Life Sci. 67, 2481–2489 (2010).
pubmed: 20339896 doi: 10.1007/s00018-010-0348-0
Lupp, S. et al. The upstream stimulatory factor USF1 is regulated by protein kinase CK2 phosphorylation. Cell. Signal. 26, 2809–2817 (2014).
pubmed: 25194820 doi: 10.1016/j.cellsig.2014.08.028
Servas, C. et al. The mammalian STE20-like kinase 1 (MST1) is a substrate for the apoptosis inhibiting protein kinase CK2. Cell. Signal. 36, 163–175 (2017).
pubmed: 28487119 doi: 10.1016/j.cellsig.2017.05.005
Rossi, M. et al. CK2 acts as a potent negative regulator of receptor-mediated insulin release in vitro and in vivo. Proc. Natl Acad. Sci. USA 112, E6818–6824 (2015).
pubmed: 26598688 doi: 10.1073/pnas.1519430112
Doliba, N. M. et al. Inhibition of cholinergic potentiation of insulin secretion from pancreatic islets by chronic elevation of glucose and fatty acids: protection by casein kinase 2 inhibitor. Mol. Metab. 6, 1240–1253 (2017).
pubmed: 29031723 pmcid: 5641685 doi: 10.1016/j.molmet.2017.07.017
Singh, N. N. & Ramji, D. P. Protein kinase CK2, an important regulator of the inflammatory response? J. Mol. Med. 86, 887–897 (2008).
pubmed: 18437331 doi: 10.1007/s00109-008-0352-0
Drygin, D. et al. Protein kinase CK2 modulates IL-6 expression in inflammatory breast cancer. Biochem. Biophys. Res. Commun. 415, 163–167 (2011).
pubmed: 22027148 doi: 10.1016/j.bbrc.2011.10.046
Koch, S. et al. Protein kinase CK2 is a critical regulator of epithelial homeostasis in chronic intestinal inflammation. Mucosal Immunol. 6, 136–145 (2013).
pubmed: 22763408 doi: 10.1038/mi.2012.57
Parhar, K., Morse, J. & Salh, B. The role of protein kinase CK2 in intestinal epithelial cell inflammatory signaling. Int. J. Colorectal Dis. 22, 601–609 (2007).
pubmed: 17009010 doi: 10.1007/s00384-006-0193-7
Yamada, M. et al. Inhibition of protein kinase CK2 prevents the progression of glomerulonephritis. Proc. Natl Acad. Sci. USA 102, 7736–7741 (2005).
pubmed: 15897466 doi: 10.1073/pnas.0409818102
Gibson, S. A. & Benveniste, E. N. Protein kinase CK2: an emerging regulator of immunity. Trends Immunol. 39, 82–85 (2018).
pubmed: 29307449 pmcid: 5800982 doi: 10.1016/j.it.2017.12.002
Yang, W. et al. Protein kinase 2 (CK2) controls CD4+ T cell effector function in the pathogenesis of colitis. Mucosal Immunol. 13, 788–798 https://doi.org/10.1038/s41385-020-0258-x (2020).
Raju, P. et al. Inactivation of paracellular cation-selective claudin-2 channels attenuates immune-mediated experimental colitis in mice. J. Clin. Investig. 130, 5197–5208 https://doi.org/10.1172/JCI138697 (2020).
Kim, S. O. et al. Ischemia induced activation of heat shock protein 27 kinases and casein kinase 2 in the preconditioned rabbit heart. Biochem. Cell Biol. 77, 559–567 (1999).
pubmed: 10668633 doi: 10.1139/o99-065
Zhou, H. et al. Pathogenesis of cardiac ischemia reperfusion injury is associated with CK2α-disturbed mitochondrial homeostasis via suppression of FUNDC1-related mitophagy. Cell Death Differ. 25, 1080–1093 (2018).
pubmed: 29540794 pmcid: 5988750 doi: 10.1038/s41418-018-0086-7
Wadey, K. S. et al. Protein kinase CK2 inhibition suppresses neointima formation via a proline-rich homeodomain-dependent mechanism. Vasc. Pharmacol. 99, 34–44 (2017).
doi: 10.1016/j.vph.2017.09.004
Hauck, L. et al. Protein kinase CK2 links extracellular growth factor signaling with the control of p27 Kip1 stability in the heart. Nat. Med. 14, 315–324 (2008).
pubmed: 18311148 doi: 10.1038/nm1729
Zhao, X., Qi, H., Zhou, J., Xu, S. & Gao, Y. P27 protects cardiomyocytes from sepsis via activation of autophagy and inhibition of apoptosis. Med. Sci. Monit. 24, 8565–8576 (2018).
pubmed: 30478251 pmcid: 6278300 doi: 10.12659/MSM.912750
Eom, G. H. et al. Casein kinase-2α1 induces hypertrophic response by phosphorylation of histone deacetylase 2 S394 and its activation in the heart. Circulation 123, 2392–2403 (2011).
pubmed: 21576649 doi: 10.1161/CIRCULATIONAHA.110.003665
Murtaza, I. et al. Down-regulation of catalase and oxidative modification of protein kinase CK2 lead to the failure of apoptosis repressor with caspase recruitment domain to inhibit cardiomyocyte hypertrophy. J. Biol. Chem. 283, 5996–6004 (2008).
pubmed: 18171680 doi: 10.1074/jbc.M706466200
Abdul-Ghani, M. et al. Cardiotrophin 1 stimulates beneficial myogenic and vascular remodeling of the heart. Cell Res. 27, 1195–1215 (2017).
pubmed: 28785017 pmcid: 5630684 doi: 10.1038/cr.2017.87
Yang, D. et al. Apamin-sensitive K+ current upregulation in volume-overload heart failure is associated with the decreased interaction of CK2 with SK2. J. Membr. Biol. 248, 1181–1189 (2015).
pubmed: 26362340 doi: 10.1007/s00232-015-9839-0
Wu, F. et al. Apelin-13 attenuates ER stress-mediated neuronal apoptosis by activating Gαi/Gαq-CK2 signaling in ischemic stroke. Exp. Neurol. 302, 136–144 (2018).
pubmed: 29337146 doi: 10.1016/j.expneurol.2018.01.006
Padgett, C. S. et al. 414 Clinical pharmacokinetics and pharmacodynamics of CX-4945, a novel inhibitor of protein kinase CK2: Interim report from the phase 1 clinical trial. Eur. J. Cancer Suppl. 8, 131–132 (2010).
doi: 10.1016/S1359-6349(10)72121-2
Zhong, B., Campagne, O., Salloum, R., Purzner, T. & Stewart, C. F. LC-MS/MS method for quantitation of the CK2 inhibitor silmitasertib (CX-4945) in human plasma, CSF, and brain tissue, and application to a clinical pharmacokinetic study in children with brain tumors. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 1152, 122254 (2020).
doi: 10.1016/j.jchromb.2020.122254
Lertsuwan, J. et al. CX-4945 induces methuosis in cholangiocarcinoma cell lines by a CK2-independent mechanism. Cancers 10, 283 (2018).
Golding, S. E. et al. Improved ATM kinase inhibitor KU-60019 radiosensitizes glioma cells, compromises insulin, AKT and ERK prosurvival signaling, and inhibits migration and invasion. Mol. Cancer Ther. 8, 2894–2902 (2009).
pubmed: 19808981 pmcid: 2761990 doi: 10.1158/1535-7163.MCT-09-0519
Sarno, S. et al. Selectivity of 4,5,6,7-tetrabromobenzotriazole, an ATP site-directed inhibitor of protein kinase CK2 (‘casein kinase-2’). FEBS Lett. 496, 44–48 (2001).
pubmed: 11343704 doi: 10.1016/S0014-5793(01)02404-8
Cozza, G. et al. Cell-permeable dual inhibitors of protein kinases CK2 and PIM-1: structural features and pharmacological potential. Cell. Mol. Life Sci. 71, 3173–3185 (2014).
pubmed: 24442476 doi: 10.1007/s00018-013-1552-5
Pagano, M. A. et al. The selectivity of inhibitors of protein kinase CK2: an update. Biochem. J. 415, 353–365 (2008).
pubmed: 18588507 doi: 10.1042/BJ20080309
Sarno, S. et al. Biochemical and three-dimensional-structural study of the specific inhibition of protein kinase CK2 by [5-oxo-5,6-dihydroindolo-(1,2-a)quinazolin-7-yl]acetic acid (IQA). Biochem. J. 374, 639–646 (2003).
Cozza, G. et al. Urolithin as a converging scaffold linking ellagic acid and coumarin analogues: design of potent protein kinase CK2 inhibitors. ChemMedChem 6, 2273–2286 (2011).
pubmed: 21972104 doi: 10.1002/cmdc.201100338
Cozza, G., Venerando, A., Sarno, S. & Pinna, L. A. The selectivity of CK2 inhibitor quinalizarin: a reevaluation. Biomed. Res. Int. 2015, 734127 (2015).
pubmed: 26558278 pmcid: 4628998 doi: 10.1155/2015/734127
Dalle Vedove, A. et al. A novel class of selective CK2 inhibitors targeting its open hinge conformation. Eur. J. Med. Chem. 195, 112267 (2020).
pubmed: 32283296 doi: 10.1016/j.ejmech.2020.112267
Cozza, G. et al. Quinalizarin as a potent, selective and cell-permeable inhibitor of protein kinase CK2. Biochem. J. 421, 387–395 (2009).
pubmed: 19432557 doi: 10.1042/BJ20090069
Pierre, F. et al. Discovery and SAR of 5-(3-chlorophenylamino)benzo[c][2,6]naphthyridine-8-carboxylic acid (CX-4945), the first clinical stage inhibitor of protein kinase CK2 for the treatment of cancer. J. Med. Chem. 54, 635–654 (2011).
pubmed: 21174434 doi: 10.1021/jm101251q
Martínez, R. et al. Multitarget anticancer agents based on histone deacetylase and protein kinase CK2 inhibitors. Molecules 25, 1497 (2020).
Chen, F., Pei, S., Wang, X., Zhu, Q. & Gou, S. Emerging JWA-targeted Pt(IV) prodrugs conjugated with CX-4945 to overcome chemo-immune-resistance. Biochem. Biophys. Res. Commun. 521, 753–761 (2020).
pubmed: 31703842 doi: 10.1016/j.bbrc.2019.10.184
Perea, S. E. et al. CIGB-300, a novel proapoptotic peptide that impairs the CK2 phosphorylation and exhibits anticancer properties both in vitro and in vivo. Mol. Cell Biochem. 316, 163–167 (2008).
pubmed: 18575815 doi: 10.1007/s11010-008-9814-5
Martins, L. R. et al. Activity of the clinical-stage CK2-specific inhibitor CX-4945 against chronic lymphocytic leukemia. Leukemia 28, 179–182 (2014).
pubmed: 23925046 doi: 10.1038/leu.2013.232
Perera, Y. et al. CIGB-300 anticancer peptide regulates the protein kinase CK2-dependent phosphoproteome. Mol. Cell. Biochem. 470, 63–75 (2020).
pubmed: 32405972 doi: 10.1007/s11010-020-03747-1
Gottardo, M. F. et al. Preclinical efficacy of CIGB-300, an anti-CK2 peptide, on breast cancer metastasic colonization. Sci. Rep. 10, 14689 (2020).
pubmed: 32895446 pmcid: 7477577 doi: 10.1038/s41598-020-71854-6
Solares, A. M. et al. Safety and preliminary efficacy data of a novel casein kinase 2 (CK2) peptide inhibitor administered intralesionally at four dose levels in patients with cervical malignancies. BMC Cancer 9, 146 (2009).
pubmed: 19439079 pmcid: 2689241 doi: 10.1186/1471-2407-9-146
Farina, H. G. et al. CIGB-300, a proapoptotic peptide, inhibits angiogenesis in vitro and in vivo. Exp. Cell Res. 317, 1677–1688 (2011).
pubmed: 21565189 doi: 10.1016/j.yexcr.2011.04.011
Pierre, F. et al. Pre-clinical characterization of CX-4945, a potent and selective small molecule inhibitor of CK2 for the treatment of cancer. Mol. Cell. Biochem. 356, 37–43 (2011).
pubmed: 21755459 doi: 10.1007/s11010-011-0956-5
Pierre, F. et al. 7-(4H-1,2,4-Triazol-3-yl)benzo[c][2,6]naphthyridines: a novel class of Pim kinase inhibitors with potent cell antiproliferative activity. Bioorg. Med. Chem. Lett. 21, 6687–6692 (2011).
pubmed: 21982499 doi: 10.1016/j.bmcl.2011.09.059
Prins, R. C. et al. CX-4945, a selective inhibitor of casein kinase-2 (CK2), exhibits anti-tumor activity in hematologic malignancies including enhanced activity in chronic lymphocytic leukemia when combined with fludarabine and inhibitors of the B-cell receptor pathway. Leukemia 27, 2094–2096 (2013).
pubmed: 23900138 doi: 10.1038/leu.2013.228
Ribeiro, S. T. et al. Casein kinase 2 controls the survival of normal thymic and leukemic γδ T cells via promotion of AKT signaling. Leukemia 31, 1603–1610 (2017).
pubmed: 27899804 doi: 10.1038/leu.2016.363
Siddiqui-Jain, A. et al. CX-4945, an orally bioavailable selective inhibitor of protein kinase CK2, inhibits prosurvival and angiogenic signaling and exhibits antitumor efficacy. Cancer Res. 70, 10288–10298 (2010).
pubmed: 21159648 doi: 10.1158/0008-5472.CAN-10-1893
Takahashi, K. et al. Inhibition of casein kinase 2 prevents growth of human osteosarcoma. Oncol. Rep. 37, 1141–1147 (2017).
pubmed: 27959425 doi: 10.3892/or.2016.5310
Zakharia, K. et al. Preclinical in vitro and in vivo evidence of an antitumor effect of CX-4945, a casein kinase II inhibitor, in cholangiocarcinoma. Transl. Oncol. 12, 143–153 (2019).
pubmed: 30316146 doi: 10.1016/j.tranon.2018.09.005
Nitta, R. T. et al. Casein kinase 2α regulates glioblastoma brain tumor-initiating cell growth through the β-catenin pathway. Oncogene 34, 3688–3699 (2015).
pubmed: 25241897 doi: 10.1038/onc.2014.299
Jung, M. et al. Inhibiting casein kinase 2 overcomes paclitaxel resistance in gastric cancer. Gastric Cancer 22, 153-1163 https://doi.org/10.1007/s10120-019-00971-7 (2019).
Ku, M. J. et al. CK2 inhibitor CX4945 induces sequential inactivation of proteins in the signaling pathways related with cell migration and suppresses metastasis of A549 human lung cancer cells. Bioorg. Med. Chem. Lett. 23, 5609–5613 (2013).
pubmed: 24012124 doi: 10.1016/j.bmcl.2013.08.043
Kim, J. & Hwan Kim, S. CK2 inhibitor CX-4945 blocks TGF-β1-induced epithelial-to-mesenchymal transition in A549 human lung adenocarcinoma cells. PLoS ONE 8, e74342 (2013).
pubmed: 24023938 pmcid: 3762800 doi: 10.1371/journal.pone.0074342
Son, Y. H., Moon, S. H. & Kim, J. The protein kinase 2 inhibitor CX-4945 regulates osteoclast and osteoblast differentiation In vitro. Mol. Cells 36, 417–423 (2013).
pubmed: 24293011 pmcid: 3887940 doi: 10.1007/s10059-013-0184-9
Bender, M. et al. Impact of protein kinase CK2 inhibitors on proliferation and differentiation of neural stem cells. Heliyon 3, e00318 (2017).
pubmed: 28649667 pmcid: 5470557 doi: 10.1016/j.heliyon.2017.e00318
Siddiqui-Jain, A. et al. CK2 inhibitor CX-4945 suppresses DNA repair response triggered by DNA-targeted anticancer drugs and augments efficacy: mechanistic rationale for drug combination therapy. Mol. Cancer Ther. 11, 994–1005 (2012).
pubmed: 22267551 doi: 10.1158/1535-7163.MCT-11-0613
Afzal, M., Kren, B. T., Naveed, A. K., Trembley, J. H. & Ahmed, K. Protein kinase CK2 impact on intracellular calcium homeostasis in prostate cancer. Mol. Cell Biochem. 470, 131–143 (2020).
pubmed: 32436081 doi: 10.1007/s11010-020-03752-4
Kim, H. et al. Identification of a novel function of CX-4945 as a splicing regulator. PLoS ONE 9, e94978 (2014).
pubmed: 24743259 pmcid: 3990583 doi: 10.1371/journal.pone.0094978

Auteurs

Christian Borgo (C)

Department of Biomedical Sciences, University of Padua, Padua, Italy.

Claudio D'Amore (C)

Department of Biomedical Sciences, University of Padua, Padua, Italy.

Stefania Sarno (S)

Department of Biomedical Sciences, University of Padua, Padua, Italy.

Mauro Salvi (M)

Department of Biomedical Sciences, University of Padua, Padua, Italy.

Maria Ruzzene (M)

Department of Biomedical Sciences, University of Padua, Padua, Italy. maria.ruzzene@unipd.it.
CNR Institute of Neuroscience, University of Padua, Padua, Italy. maria.ruzzene@unipd.it.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH