Evolutionary history of mental glands in turtles reveals a single origin in an aquatic ancestor and recurrent losses independent of macrohabitat.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
17 05 2021
17 05 2021
Historique:
received:
28
01
2021
accepted:
21
04
2021
entrez:
18
5
2021
pubmed:
19
5
2021
medline:
30
10
2021
Statut:
epublish
Résumé
Despite the relevance of chemical communication in vertebrates, comparative examinations of macroevolutionary trends in chemical signaling systems are scarce. Many turtle and tortoise species are reliant on chemical signals to communicate in aquatic and terrestrial macrohabitats, and many of these species possess specialized integumentary organs, termed mental glands (MGs), involved in the production of chemosignals. We inferred the evolutionary history of MGs and tested the impact of macrohabitat on their evolution. Inference of ancestral states along a time-calibrated phylogeny revealed a single origin in the ancestor of the subclade Testudinoidea. Thus, MGs represent homologous structures in all descending lineages. We also inferred multiple independent losses of MGs in both terrestrial and aquatic clades. Although MGs first appeared in an aquatic turtle (the testudinoid ancestor), macrohabitat seems to have had little effect on MG presence or absence in descendants. Instead, we find clade-specific evolutionary trends, with some clades showing increased gland size and morphological complexity, whereas others exhibiting reduction or MG loss. In sister clades inhabiting similar ecological niches, contrasting patterns (loss vs. maintenance) may occur. We conclude that the multiple losses of MGs in turtle clades have not been influenced by macrohabitat and that other factors have affected MG evolution.
Identifiants
pubmed: 34001926
doi: 10.1038/s41598-021-89520-w
pii: 10.1038/s41598-021-89520-w
pmc: PMC8129087
doi:
Substances chimiques
Pheromones
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
10396Références
Endler, J. A. Signals, signal conditions, and the direction of evolution. Am. Nat. 139, S125–S153 (1992).
doi: 10.1086/285308
Endler, J. A. Some general comments on the evolution and design of animal communication systems. Philos. Trans. R. Soc. Lond. B 340, 215–225 (1993).
doi: 10.1098/rstb.1993.0060
Bakker, T. C. & Mundwiler, B. Female mate choice and male red coloration in a natural three-spined stickleback (Gasterosteus aculeatus) population. Behav. Ecol. 5, 74–80 (1994).
doi: 10.1093/beheco/5.1.74
Molnár, O., Bajer, K., Mészáros, B., Török, J. & Herczeg, G. Negative correlation between nuptial throat colour and blood parasite load in male European green lizards supports the Hamilton-Zuk hypothesis. Naturwissenschaften 100, 551–558 (2013).
pubmed: 23644520
doi: 10.1007/s00114-013-1051-4
Wolfenbarger, L. L. Red coloration of male northern cardinals correlates with mate quality and territory quality. Behav. Ecol. 10, 80–90 (1999).
doi: 10.1093/beheco/10.1.80
Endler, J. A. Natural-selection on color patterns in Poecilia reticulata. Evolution 34, 76–91 (1980).
pubmed: 28563214
doi: 10.2307/2408316
Marcondes, R. S. & Brumfield, R. T. Fifty shades of brown: Macroevolution of plumage brightness in the Furnariida, a large clade of drab Neotropical passerines. Evolution 73, 704–719 (2019).
pubmed: 30816993
doi: 10.1111/evo.13707
Alberts, A. C. Constraints on the design of chemical communication systems in terrestrial vertebrates. Am. Nat. 139, S62–S89 (1992).
Campos, S. M. et al. Volatile fatty acid and aldehyde abundances evolve with behavior and habitat temperature in Sceloporus lizards. Behav. Ecol. (2020).
Stuart-Fox, D. M. & Ord, T. J. Sexual selection, natural selection and the evolution of dimorphic coloration and ornamentation in agamid lizards. Proc. R. Soc. B 271, 2249–2255 (2004).
pubmed: 15539350
doi: 10.1098/rspb.2004.2802
pmcid: 1691857
Karlson, P. & Lüscher, M. ‘Pheromones’: A new term for a class of biologically active substances. Nature 183, 55–56 (1959).
pubmed: 13622694
doi: 10.1038/183055a0
Schmidt, H. R. & Benton, R. Molecular mechanisms of olfactory detection in insects: Beyond receptors. Open Biol. 10, 200252 (2020).
pubmed: 33022193
pmcid: 7653356
doi: 10.1098/rsob.200252
Symonds, M. R. & Elgar, M. A. The evolution of pheromone diversity. Trends Ecol. Evol. 23, 220–228 (2008).
pubmed: 18308422
doi: 10.1016/j.tree.2007.11.009
Boulet, M., Charpentier, M. J. & Drea, C. M. Decoding an olfactory mechanism of kin recognition and inbreeding avoidance in a primate. BMC Evol. Biol. 9, 281 (2009).
pubmed: 19958525
pmcid: 2799416
doi: 10.1186/1471-2148-9-281
Scordato, E. S., Dubay, G. & Drea, C. M. Chemical composition of scent marks in the ringtailed lemur (Lemur catta): Glandular differences, seasonal variation, and individual signatures. Chem. Senses 32, 493–504 (2007).
pubmed: 17488747
doi: 10.1093/chemse/bjm018
Janssenswillen, S. et al. Origin and diversification of a salamander sex pheromone system. Mol. Biol. Evol. 32, 472–480 (2015).
pubmed: 25415963
doi: 10.1093/molbev/msu316
Kikuyama, S. et al. Sodefrin: A female-attracting peptide pheromone in newt cloacal glands. Science 267, 1643–1645 (1995).
pubmed: 7886452
doi: 10.1126/science.7886452
Wabnitz, P. A., Bowie, J. H., Tyler, M. J., Wallace, J. C. & Smith, B. P. Aquatic sex pheromone from a male tree frog. Nature 401, 444–445 (1999).
pubmed: 10519546
doi: 10.1038/46724
Baeckens, S. et al. Environmental conditions shape the chemical signal design of lizards. Funct. Ecol. 32, 566–580 (2018).
doi: 10.1111/1365-2435.12984
Martín, J. & López, P. Pheromones and chemical communication in lizards. In Reproductive Biology and Phylogeny of Lizards and Tuatara (eds Rheubert, J. L. et al.) 43–75 (CRC Press, Boca Raton, 2014).
Silva, L. & Antunes, A. Vomeronasal receptors in vertebrates and the evolution of pheromone detection. Ann. Rev. Anim. Biosci. 5, 353–370 (2017).
doi: 10.1146/annurev-animal-022516-022801
Bonadonna, F. & Nevitt, G. A. Partner-specific odor recognition in an Antarctic seabird. Science 306, 835–835 (2004).
pubmed: 15514149
doi: 10.1126/science.1103001
Bonadonna, F. & Sanz-Aguilar, A. Kin recognition and inbreeding avoidance in wild birds: The first evidence for individual kin-related odour recognition. Anim. Behav. 84, 509–513 (2012).
doi: 10.1016/j.anbehav.2012.06.014
Krause, E. T., Krüger, O., Kohlmeier, P. & Caspers, B. A. Olfactory kin recognition in a songbird. Biol. Lett. 8, 327–329 (2012).
doi: 10.1098/rsbl.2011.1093
Baeckens, S. et al. Environmental conditions shape the chemical signal design of lizards. Funct. Ecol. 32, 566–580 (2018).
doi: 10.1111/1365-2435.12984
Wyatt, T. D. Proteins and peptides as pheromone signals and chemical signatures. Anim. Behav. 97, 273–280 (2014).
doi: 10.1016/j.anbehav.2014.07.025
Baeckens, S., Edwards, S., Huyghe, K. & Van Damme, R. Chemical signalling in lizards: An interspecific comparison of femoral pore numbers in Lacertidae. Biol. J. Linn. Soc. 114, 44–57 (2015).
doi: 10.1111/bij.12414
Ossip-Klein, A. G., Fuentes, J. A., Hews, D. K. & Martins, E. P. Information content is more important than sensory system or physical distance in guiding the long-term evolutionary relationships between signaling modalities in Sceloporus lizards. Behav. Ecol. Sociobiol. 67, 1513–1522 (2013).
doi: 10.1007/s00265-013-1535-4
Pincheira-Donoso, D., Hodgson, D. J. & Tregenza, T. Comparative evidence for strong phylogenetic inertia in precloacal signalling glands in a species-rich lizard clade. Evol. Ecol. Res. 10, 11–28 (2008).
Wang, Z. et al. The draft genomes of soft-shell turtle and green sea turtle yield insights into the development and evolution of the turtle-specific body plan. Nat. Genet. 45, 701–706 (2013).
pubmed: 23624526
pmcid: 4000948
doi: 10.1038/ng.2615
Schwenk, K. Comparative anatomy and physiology of chemical senses in nonavian aquatic reptiles. In Sensory Evolution on the Threshold: Adaptations in Secondarily Aquatic Vertebrates (eds Thewissen, J. H. M. & Nummela, S.) 65–81 (University of California Press, Berkeley, 2008).
Vieyra, M. L. Olfactory receptor genes in terrestrial, freshwater, and sea turtles: Evidence for a reduction in the number of functional genes in aquatic species. Chelon. Conserv. Biol. 10, 181–187 (2011).
doi: 10.2744/CCB-0914.1
Mason, R. T. & Parker, M. R. Social behavior and pheromonal communication in reptiles. J. Comp. Physiol. A. 196, 729–749 (2010).
doi: 10.1007/s00359-010-0551-3
Ehrenfeld, J. G. & Ehrenfeld, D. W. Externally secreting glands of freshwater and sea turtles. Copeia 1973, 305–314 (1973).
doi: 10.2307/1442969
Waagen, G. N. Musk glands in recent turtles. Master of Science thesis, Department of Biology, University of Utah (1972).
Weldon, P. J., Flachsbarth, B. & Schulz, S. Natural products from the integument of nonavian reptiles. Nat. Prod. Rep. 25, 738–756 (2008).
pubmed: 18663393
doi: 10.1039/b509854h
Ibáñez, A. et al. The chemistry and histology of sexually dimorphic mental glands in the freshwater turtle, Mauremys leprosa. PeerJ 8, e9047 (2020).
pubmed: 32461828
pmcid: 7233278
doi: 10.7717/peerj.9047
Rose, F. L., Drotman, R. & Weaver, W. G. Electrophoresis of chin gland extracts of Gopherus (tortoises). Comp. Biochem. Physiol. 29, 847–851 (1969).
doi: 10.1016/0010-406X(69)91637-5
Winokur, R. M. & Legler, J. M. Chelonian mental glands. J. Morphol. 147, 275–291 (1975).
pubmed: 30301298
doi: 10.1002/jmor.1051470303
Alberts, A. C., Rostal, D. C. & Lance, V. A. Studies on the chemistry and social significance of chin gland secretions in the desert tortoise, Gopherus agassizii. Herpetol. Monogr. 8, 116–124 (1994).
doi: 10.2307/1467075
Kelley, M. D. & Mendonça, M. T. Mental gland secretions as a social cue in gopher tortoises (Gopherus polyphemus): Tortoise presence stimulates and maintains social behaviour with chemical cues. Acta Ethol. 24, 1–8 (2020).
doi: 10.1007/s10211-020-00353-8
Rose, F. L. Tortoise chin gland fatty acid composition: Behavioral significance. Comp. Biochem. Physiol. 32, 577–580 (1970).
doi: 10.1016/0010-406X(70)90475-5
Pereira, A. G., Sterli, J., Moreira, F. R. & Schrago, C. G. Multilocus phylogeny and statistical biogeography clarify the evolutionary history of major lineages of turtles. Mol. Phylogenet. Evol. 113, 59–66 (2017).
pubmed: 28501611
doi: 10.1016/j.ympev.2017.05.008
Grosse, A. M., Sterrett, S. C. & Maerz, J. C. Effects of turbidity on the foraging success of the eastern painted turtle. Copeia 2010, 463–467 (2010).
doi: 10.1643/CE-09-162
Vitt, L. J. & Caldwell, J. P. Herpetology: An Introductory Biology of Amphibians and Reptiles (Academic Press, 2013).
Thomson, R. C., Spinks, P. Q. & Shaffer, H. B. A global phylogeny of turtles reveals a burst of climate-associated diversification on continental margins. Proc. Natl. Acad. Sci. 118, e2012215118 (2021).
pubmed: 33558231
doi: 10.1073/pnas.2012215118
pmcid: 7896334
Colston, T. J., Kulkarni, P., Jetz, W. & Pyron, R. A. Phylogenetic and spatial distribution of evolutionary diversification, isolation, and threat in turtles and crocodilians (non-avian archosauromorphs). BMC Evol. Biol. 20, 1–16 (2020).
doi: 10.1186/s12862-020-01642-3
Joyce, W. G., Parham, J. F., Lyson, T. R., Warnock, R. C. & Donoghue, P. C. A divergence dating analysis of turtles using fossil calibrations: An example of best practices. J. Paleontol. 87, 612–634 (2013).
doi: 10.1666/12-149
Shaffer, H. B., McCartney-Melstad, E., Near, T. J., Mount, G. G. & Spinks, P. Q. Phylogenomic analyses of 539 highly informative loci dates a fully resolved time tree for the major clades of living turtles (Testudines). Mol. Phylogenet. Evol. 115, 7–15 (2017).
pubmed: 28711671
doi: 10.1016/j.ympev.2017.07.006
Beaulieu, J. M., O’Meara, B. C. & Donoghue, M. J. Identifying hidden rate changes in the evolution of a binary morphological character: The evolution of plant habit in campanulid angiosperms. Syst. Biol. 62, 725–737 (2013).
pubmed: 23676760
doi: 10.1093/sysbio/syt034
Joyce, W. G. & Gauthier, J. A. Palaeoecology of Triassic stem turtles sheds new light on turtle origins. Proc. R. Soc. Lond. B 271, 1–5 (2004).
doi: 10.1098/rspb.2003.2523
Quagliata, S., Malentacchi, C., Delfino, C., Brunasso, A. M. & Delfino, G. Adaptive evolution of secretory cell lines in vertebrate skin. Caryologia 59, 187–206 (2006).
doi: 10.1080/00087114.2006.10797915
Shi, P. & Zhang, J. Extraordinary diversity of chemosensory receptor gene repertoires among vertebrates. In Chemosensory Systems in Mammals, Fishes, and Insects (eds Meyerhof, W. & Korsching, S.) 1–23 (Springer, Berlin, 2009).
Swaney, W. T. & Keverne, E. B. The evolution of pheromonal communication. Behav. Brain Res. 200, 239–247 (2009).
pubmed: 18977248
doi: 10.1016/j.bbr.2008.09.039
Martín, J. & López, P. Effects of global warming on sensory ecology of rock lizards: Increased temperatures alter the efficacy of sexual chemical signals. Funct. Ecol. 27, 1332–1340 (2013).
doi: 10.1111/1365-2435.12128
Ibáñez, A., López, P. & Martín, J. Discrimination of conspecifics’ chemicals may allow Spanish terrapins to find better partners and avoid competitors. Anim. Behav. 83, 1107–1113 (2012).
doi: 10.1016/j.anbehav.2012.02.001
Lewis, C. H., Molloy, S. F., Chambers, R. M. & Davenport, J. Response of common musk turtles (Sternotherus odoratus) to intraspecific chemical cues. J. Herpetol. 41, 349–353 (2007).
doi: 10.1670/0022-1511(2007)41[349:ROCMTS]2.0.CO;2
Poschadel, J. R., Meyer-Lucht, Y. & Plath, M. Response to chemical cues from conspecifics reflects male mating preference for large females and avoidance of large competitors in the European pond turtle, Emys orbicularis. Behaviour 143, 569–587 (2006).
doi: 10.1163/156853906776759510
Weaver, W. G. Courtship and combat behavior in Gopherus berlandieri. Bull. Fla. St. Mus. 15, 1–43 (1970).
Auffenberg, W. On the courtship of Gopherus polyphemus. Herpetologica 22, 113–117 (1966).
Augustine, L. & Haislip, N. Husbandry and reproduction of the Indochinese box turtle Cuora galbinifrons, Bourret’s box turtle Cuora bourreti and Southern Vietnam box turtle Cuora picturata in North America. Int. Zoo Yearb. 53, 238–249 (2019).
doi: 10.1111/izy.12214
Liu, Y.-X., Davy, C. M., Shi, H.-T. & Murphy, R. W. Sex in the half-shell: A review of the functions and evolution of courtship behavior in freshwater turtles. Chelon. Conserv. Biol. 12, 84–100 (2013).
doi: 10.2744/CCB-1037.1
Schilde, M. Beobachtungen zum Fortpflanzungsverhalten von Sacalia bealei und Sacalia quadriocellata. Radiata 14, 30–32 (2005).
Fritz, U. Courtship behavior and systematics in the subtribe Nectemydina. 2. A comparison above the species level and remarks on the evolution of behaviour elements. Bull. Chicago Herpetol. Soc. 34, 225–236 (1999).
Martín, J. & López, P. Multimodal sexual signals in male ocellated lizards Lacerta lepida: Vitamin E in scent and green coloration may signal male quality in different sensory channels. Naturwissenschaften 97, 545–553 (2010).
pubmed: 20419284
doi: 10.1007/s00114-010-0669-8
Rowe, C. Receiver psychology and the evolution of multicomponent signals. Anim. Behav. 58, 921–931 (1999).
pubmed: 10564594
doi: 10.1006/anbe.1999.1242
Martins, E. P. et al. Evolving from static to dynamic signals: Evolutionary compensation between two communicative signals. Anim. Behav. 102, 223–229 (2015).
pubmed: 25892737
pmcid: 4400845
doi: 10.1016/j.anbehav.2015.01.028
Ferrara, C. R., Vogt, R. C. & Sousa-Lima, R. S. Turtle vocalizations as the first evidence of posthatching parental care in chelonians. J. Comp. Psychol. 127, 24 (2013).
pubmed: 23088649
doi: 10.1037/a0029656
Bulté, G., Germain, R. R., O’Connor, C. M. & Blouin-Demers, G. Sexual dichromatism in the northern map turtle, Graptemys geographica. Chelon. Conserv. Biol. 12, 187–192 (2013).
doi: 10.2744/CCB-0995a.1
Ibáñez, A., Marzal, A., López, P. & Martín, J. Sexually dichromatic coloration reflects size and immunocompetence in female Spanish terrapins, Mauremys leprosa. Naturwissenschaften 100, 1137–1147 (2013).
pubmed: 24253419
doi: 10.1007/s00114-013-1118-2
Rowe, J. W., Gradel, J. R., Bunce, C. F. & Clark, D. L. Sexual dimorphism in size and shell shape, and dichromatism of spotted turtles (Clemmys guttata) in southwestern Michigan. Amphibia-Reptilia 33, 443–450 (2013).
doi: 10.1163/15685381-00002847
Steffen, J. E., Learn, K. M., Drumheller, J. S., Boback, S. M. & McGraw, K. J. Carotenoid composition of colorful body stripes and patches in the painted turtle (Chrysemys picta) and red-eared slider (Trachemys scripta). Chelon. Conserv. Biol. 14, 56–63 (2015).
doi: 10.2744/ccab-14-01-56-63.1
Moll, E. O., Matson, K. E. & Krehbiel, E. B. Sexual and seasonal dichromatism in the Asian river turtle Callagur borneoensis. Herpetologica 37, 181–194 (1981).
Praschag, P. et al. A new subspecies of Batagur affinis (Cantor, 1847), one of the world’s most critically endangered chelonians (Testudines: Geoemydidae). Zootaxa 2233, 57–68 (2009).
doi: 10.11646/zootaxa.2233.1.3
Praschag, P., Hundsdörfer, A. & Fritz, U. Phylogeny and taxonomy of endangered South and South-east Asian freshwater turtles elucidated by mtDNA sequence variation (Testudines: Geoemydidae: Batagur, Callagur, Hardella, Kachuga, Pangshura). Zool. Scr. 36, 429–442 (2007).
doi: 10.1111/j.1463-6409.2007.00293.x
Fritz, U. Courtship behavior and systematics in the subtribe Nectemydina. 1. The genus Trachemys, especially Trachemys scripta callirostris (Gray, 1855). Bull. Chicago Herpetol. Soc. 33, 225–236 (1998).
Ferrara, C. R., Vogt, R. C., Eisemberg, C. C. & Doody, J. S. First evidence of the pig-nosed turtle (Carettochelys insculpta) vocalizing underwater. Copeia 105, 29–32 (2017).
doi: 10.1643/CE-16-407
Baeckens, S. & Whiting, M. J. Investment in chemical signalling glands facilitates the evolution of sociality in lizards. Proc. R. Soc. B 288, 20202438 (2021).
pubmed: 33593182
doi: 10.1098/rspb.2020.2438
pmcid: 7935108
Baeckens, S., García-Roa, R., Martín, J. & Van Damme, R. The role of diet in shaping the chemical signal design of lacertid lizards. J. Chem. Ecol. 43, 902–910 (2017).
pubmed: 28918590
doi: 10.1007/s10886-017-0884-2
Kopena, R., López, P. & Martín, J. Relative contribution of dietary carotenoids and vitamin E to visual and chemical sexual signals of male Iberian green lizards: An experimental test. Behav. Ecol. Sociobiol. 68, 571–581 (2014).
doi: 10.1007/s00265-013-1672-9
Kopena, R., Martín, J., López, P. & Herczeg, G. Vitamin E supplementation increases the attractiveness of males’ scent for female European green lizards. PLoS ONE 6, e19410 (2011).
pubmed: 21552540
pmcid: 3084291
doi: 10.1371/journal.pone.0019410
Martin, J., Ortega, J. & Lopez, P. Interpopulational variations in sexual chemical signals of Iberian wall lizards may allow maximizing signal efficiency under different climatic conditions. PLoS ONE 10, e0131492 (2015).
pubmed: 26121693
pmcid: 4488078
doi: 10.1371/journal.pone.0131492
Donihue, C. M. et al. Rapid and repeated divergence of animal chemical signals in an island introduction experiment. J. Anim. Ecol. 89, 1458–1467 (2020).
pubmed: 32314366
doi: 10.1111/1365-2656.13205
Novelli, I. A. Estudo morfológico (anatômico e histológico) do sistema tegumentar de Hydromedusa maximiliani (Mikan, 1820) (Testudines, Chelidae) e Phrynops geoffroanus (Schweigger, 1812) (Testudines, Chelidae). Doctoral thesis, Universidade Federal Rural do Rio de Janeiro (2011).
Crawford, N. G. et al. A phylogenomic analysis of turtles. Mol. Phylogenet. Evol. 83, 250–257 (2015).
pubmed: 25450099
doi: 10.1016/j.ympev.2014.10.021
Bonin, F., Devaux, B. & Dupré, A. Turtles of the World (JHU Press, Baltimore, 2006).
Bour, R. Global diversity of turtles (Chelonii; Reptilia) in freshwater. Hydrobiologia 595, 593–598 (2008).
doi: 10.1007/s10750-007-9244-5
Ernst, C. H. & Barbour, R. W. Turtles of the World (Smithsonian Institution Press, Washington DC, 1989).
Beaulieu, J. M., Oliver, J. C. & O’Meara, B. C. corHMM: Analysis of Binary Character Evolution, https://CRAN.R-project.org/package=corHMM (2017).
Boyko, J. D. & Beaulieu, J. M. Generalized hidden Markov models for phylogenetic comparative datasets. Methods Ecol. Evol. 12, 468–478 (2021).
doi: 10.1111/2041-210X.13534
Beaulieu, J. M. & Donoghue, M. J. Fruit evolution and diversification in campanulid angiosperms. Evolution 67, 3132–3144 (2013).
pubmed: 24151998
doi: 10.1111/evo.12180
Burnham, K. P. & Anderson, D. R. Multimodel inference: Understanding AIC and BIC in model selection. Sociol. Methods Res. 33, 261–304 (2004).
doi: 10.1177/0049124104268644
Pagel, M. Detecting correlated evolution on phylogenies: A general method for the comparative analysis of discrete characters. Proc. R. Soc. Lond. B 255, 37–45 (1994).
doi: 10.1098/rspb.1994.0006
Gray, K. M. & Steidl, R. J. A plant invasion affects condition but not density or population structure of a vulnerable reptile. Biol. Invasions 17, 1979–1988 (2015).
doi: 10.1007/s10530-015-0851-1
Edwards, T. et al. The desert tortoise trichotomy: Mexico hosts a third, new sister-species of tortoise in the Gopherus morafkai—G. agassizii group. ZooKeys 562, 131–158 (2016).
doi: 10.3897/zookeys.562.6124