Pharmacokinetics of anti-infective agents during CytoSorb hemoadsorption.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
18 05 2021
18 05 2021
Historique:
received:
29
01
2021
accepted:
27
04
2021
entrez:
19
5
2021
pubmed:
20
5
2021
medline:
9
11
2021
Statut:
epublish
Résumé
Cytokine hemoadsorption might be beneficial in patients with sepsis. However, its effect on anti-infective agents' disposition remains largely unknown. We sought to determine the influence of hemoadsorption on the pharmacokinetics of common anti-infective agents. This is an interventional experimental study, conducted in 24 healthy pigs. Animals were randomly allocated to either hemoadsorption (cases) or sham extracorporeal circuit (controls) and to drug combinations (3 cases and 3 controls for each combination). Hemoadsorption was performed with CytoSorb (CytoSorbents Corporation, USA). We evaluated 17 drugs (clindamycin, fluconazole, linezolid, meropenem, piperacillin, anidulafungin, ganciclovir, clarithromycin, posaconazole, teicoplanin, tobramycin, ceftriaxone, ciprofloxacin, metronidazole, liposomal amphotericin B, flucloxacillin and cefepime). Repeated blood sampling from the extracorporeal circulation (adsorber inlet/outlet, sham circuit) was performed over six hours following administration. Total clearance and adsorber-specific clearance were computed. Hemoadsorption was associated with increased clearance of all study drugs, except ganciclovir. Its impact on total body clearance was considered as moderate for fluconazole (282%) and linezolid (115%), mild for liposomal amphotericin B (75%), posaconazole (32%) and teicoplanine (31%) and negligible for all other drugs. Hemoadsorber clearance declined over time, with even delayed desorption for beta-lactams. It was moderately correlated with drug's lipophilicity (p = 0.01; r
Identifiants
pubmed: 34006946
doi: 10.1038/s41598-021-89965-z
pii: 10.1038/s41598-021-89965-z
pmc: PMC8131695
doi:
Substances chimiques
Anti-Infective Agents
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
10493Références
J Cereb Blood Flow Metab. 2011 Apr;31(4):991-3
pubmed: 21206507
Med Klin Intensivmed Notfmed. 2019 Nov;114(8):699-707
pubmed: 28871441
Int J Artif Organs. 2019 Feb;42(2):57-64
pubmed: 30545255
Intensive Care Med. 2019 Feb;45(2):236-239
pubmed: 30446798
J Artif Organs. 2017 Sep;20(3):252-259
pubmed: 28589286
Case Rep Cardiol. 2019 Jul 24;2019:1905871
pubmed: 31428479
Intensive Care Med Exp. 2018 May 4;6(1):12
pubmed: 29728790
Polymers (Basel). 2020 May 13;12(5):
pubmed: 32414187
Microbiol Mol Biol Rev. 2012 Mar;76(1):16-32
pubmed: 22390970
Int J Artif Organs. 2020 Dec;43(12):753-757
pubmed: 32342769
Crit Care Med. 2017 Mar;45(3):486-552
pubmed: 28098591
Blood Purif. 2002;20(4):380-8
pubmed: 12169849
JAMA. 2016 Feb 23;315(8):801-10
pubmed: 26903338
J Intensive Care Soc. 2015 Aug;16(3):257-264
pubmed: 28979423
PLoS One. 2017 Oct 30;12(10):e0187015
pubmed: 29084247
J Antimicrob Chemother. 2008 Jun;61(6):1332-5
pubmed: 18344549
Crit Care. 2011;15(1):205
pubmed: 21371356
Crit Care. 2017 Mar 27;21(1):74
pubmed: 28343448
Int J Artif Organs. 2019 May;42(5):258-262
pubmed: 30819024
J Antimicrob Chemother. 2015 Jul;70(7):2169-71
pubmed: 25786479
Lancet. 2020 Jan 18;395(10219):200-211
pubmed: 31954465
Intensive Care Med Exp. 2020 Jun 15;8(1):21
pubmed: 32542550
Crit Care. 2019 Sep 18;23(1):317
pubmed: 31533846