Prespacers formed during primed adaptation associate with the Cas1-Cas2 adaptation complex and the Cas3 interference nuclease-helicase.
CRISPR adaptation
CRISPR interference
CRISPR-Cas
Journal
Proceedings of the National Academy of Sciences of the United States of America
ISSN: 1091-6490
Titre abrégé: Proc Natl Acad Sci U S A
Pays: United States
ID NLM: 7505876
Informations de publication
Date de publication:
01 06 2021
01 06 2021
Historique:
entrez:
26
5
2021
pubmed:
27
5
2021
medline:
15
12
2021
Statut:
ppublish
Résumé
For Type I CRISPR-Cas systems, a mode of CRISPR adaptation named priming has been described. Priming allows specific and highly efficient acquisition of new spacers from DNA recognized (primed) by the Cascade-crRNA (CRISPR RNA) effector complex. Recognition of the priming protospacer by Cascade-crRNA serves as a signal for engaging the Cas3 nuclease-helicase required for both interference and primed adaptation, suggesting the existence of a primed adaptation complex (PAC) containing the Cas1-Cas2 adaptation integrase and Cas3. To detect this complex in vivo, we here performed chromatin immunoprecipitation with Cas3-specific and Cas1-specific antibodies using cells undergoing primed adaptation. We found that prespacers are bound by both Cas1 (presumably, as part of the Cas1-Cas2 integrase) and Cas3, implying direct physical association of the interference and adaptation machineries as part of PAC.
Identifiants
pubmed: 34035168
pii: 2021291118
doi: 10.1073/pnas.2021291118
pmc: PMC8179228
pii:
doi:
Substances chimiques
Escherichia coli Proteins
0
Endonucleases
EC 3.1.-
DNA Helicases
EC 3.6.4.-
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : NIGMS NIH HHS
ID : R01 GM104071
Pays : United States
Informations de copyright
Copyright © 2021 the Author(s). Published by PNAS.
Déclaration de conflit d'intérêts
The authors declare no competing interest.
Références
Nature. 2020 Mar;579(7797):141-145
pubmed: 32076262
Science. 2018 Jul 6;361(6397):
pubmed: 29880725
Bioinformatics. 2014 Aug 1;30(15):2114-20
pubmed: 24695404
Science. 2007 Mar 23;315(5819):1709-12
pubmed: 17379808
Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6640-5
pubmed: 10829079
Nature. 2011 Sep 21;477(7365):486-489
pubmed: 21938068
Nat Methods. 2012 Mar 04;9(4):357-9
pubmed: 22388286
Nucleic Acids Res. 2014 May;42(9):5907-16
pubmed: 24728991
Nature. 2015 Mar 12;519(7542):193-8
pubmed: 25707795
Nature. 2015 Nov 26;527(7579):535-8
pubmed: 26503043
Mol Cell. 2016 Sep 1;63(5):852-64
pubmed: 27546790
Nucleic Acids Res. 2012 Jul;40(12):5569-76
pubmed: 22402487
Cell Host Microbe. 2019 Oct 9;26(4):515-526.e6
pubmed: 31585845
PLoS One. 2012;7(4):e35888
pubmed: 22558257
Nucleic Acids Res. 2014 Jul;42(12):7884-93
pubmed: 24920831
J Biol Chem. 2013 Aug 2;288(31):22184-92
pubmed: 23760266
Curr Protoc Mol Biol. 2007 Jul;Chapter 1:Unit 1.17
pubmed: 18265391
Nucleic Acids Res. 2015 Jul 13;43(12):6049-61
pubmed: 26013814
Mol Cell. 2018 May 3;70(3):385-394.e3
pubmed: 29706536
Annu Rev Genet. 2020 Nov 23;54:93-120
pubmed: 32857635
Nucleic Acids Res. 2020 Aug 20;48(14):8022-8034
pubmed: 32573735
Nucleic Acids Res. 2017 Apr 7;45(6):3297-3307
pubmed: 28204574
CRISPR J. 2018 Oct;1(5):325-336
pubmed: 31021272
Nucleic Acids Res. 2015 Dec 15;43(22):10848-60
pubmed: 26586803
Nature. 2014 Nov 6;515(7525):147-50
pubmed: 25118175
Nucleic Acids Res. 2020 Mar 18;48(5):2486-2501
pubmed: 31980818
Mol Microbiol. 2019 Jun;111(6):1558-1570
pubmed: 30875129
Nucleic Acids Res. 2014 Feb;42(4):2483-92
pubmed: 24265226
Cell Rep. 2017 Dec 26;21(13):3717-3727
pubmed: 29281822
Cell. 2017 Jun 29;170(1):48-60.e11
pubmed: 28666122
Cell. 2018 Nov 1;175(4):934-946.e15
pubmed: 30343903
Nat Struct Mol Biol. 2014 Sep;21(9):771-7
pubmed: 25132177
Nucleic Acids Res. 2011 Mar;39(6):2073-91
pubmed: 21097887
Proc Natl Acad Sci U S A. 2017 Jun 27;114(26):E5113-E5121
pubmed: 28438998
mBio. 2018 Dec 4;9(6):
pubmed: 30514784
Cell. 2015 Nov 5;163(4):854-65
pubmed: 26522594
Nat Commun. 2019 Dec 6;10(1):5302
pubmed: 31811138
Science. 2008 Dec 19;322(5909):1843-5
pubmed: 19095942
Nat Commun. 2019 Oct 10;10(1):4603
pubmed: 31601800
Nat Biotechnol. 2008 Dec;26(12):1367-72
pubmed: 19029910
Nucleic Acids Res. 2014 Jul;42(13):8516-26
pubmed: 24990370
Proc Natl Acad Sci U S A. 2011 Jun 21;108(25):10098-103
pubmed: 21646539
Bioinformatics. 2020 Apr 1;36(7):2272-2274
pubmed: 31821414
Nat Commun. 2016 Oct 03;7:12853
pubmed: 27694798
J Proteome Res. 2011 Apr 1;10(4):1794-805
pubmed: 21254760
mBio. 2018 Apr 17;9(2):
pubmed: 29666291
Proc Natl Acad Sci U S A. 2014 Jul 8;111(27):9798-803
pubmed: 24912165
Proc Natl Acad Sci U S A. 2014 Apr 22;111(16):E1629-38
pubmed: 24711427
Nat Struct Mol Biol. 2011 May;18(5):529-36
pubmed: 21460843
Proc Natl Acad Sci U S A. 2014 Nov 18;111(46):16359-64
pubmed: 25368186
Nucleic Acids Res. 2020 Jun 19;48(11):6120-6135
pubmed: 32421777
Nature. 2015 Apr 23;520(7548):505-510
pubmed: 25874675
Mol Cell. 2012 Jun 8;46(5):595-605
pubmed: 22521689
Nat Rev Microbiol. 2019 Jan;17(1):7-12
pubmed: 30171202
PLoS Genet. 2013;9(3):e1003312
pubmed: 23516369
Bioinformatics. 2014 Mar 1;30(5):614-20
pubmed: 24142950
RNA Biol. 2019 Apr;16(4):566-576
pubmed: 30157725
Nucleic Acids Res. 2015 Dec 15;43(22):10821-30
pubmed: 26578567
Trends Microbiol. 2020 Jul;28(7):543-553
pubmed: 32544441
Curr Opin Struct Biol. 2017 Apr;43:68-78
pubmed: 27912110
Science. 2008 Aug 15;321(5891):960-4
pubmed: 18703739
Nat Commun. 2012 Jul 10;3:945
pubmed: 22781758
Genes (Basel). 2019 Oct 31;10(11):
pubmed: 31683605
RNA. 2017 Oct;23(10):1525-1538
pubmed: 28724535
Proc Natl Acad Sci U S A. 2016 Jul 5;113(27):7626-31
pubmed: 27325762
Trends Biochem Sci. 2009 Aug;34(8):401-7
pubmed: 19646880
FEMS Microbiol Rev. 2015 May;39(3):428-41
pubmed: 25994611
Cell Rep. 2015 Mar 10;10(9):1534-1543
pubmed: 25753419
Proc Natl Acad Sci U S A. 2014 May 6;111(18):6618-23
pubmed: 24748111