Prespacers formed during primed adaptation associate with the Cas1-Cas2 adaptation complex and the Cas3 interference nuclease-helicase.


Journal

Proceedings of the National Academy of Sciences of the United States of America
ISSN: 1091-6490
Titre abrégé: Proc Natl Acad Sci U S A
Pays: United States
ID NLM: 7505876

Informations de publication

Date de publication:
01 06 2021
Historique:
entrez: 26 5 2021
pubmed: 27 5 2021
medline: 15 12 2021
Statut: ppublish

Résumé

For Type I CRISPR-Cas systems, a mode of CRISPR adaptation named priming has been described. Priming allows specific and highly efficient acquisition of new spacers from DNA recognized (primed) by the Cascade-crRNA (CRISPR RNA) effector complex. Recognition of the priming protospacer by Cascade-crRNA serves as a signal for engaging the Cas3 nuclease-helicase required for both interference and primed adaptation, suggesting the existence of a primed adaptation complex (PAC) containing the Cas1-Cas2 adaptation integrase and Cas3. To detect this complex in vivo, we here performed chromatin immunoprecipitation with Cas3-specific and Cas1-specific antibodies using cells undergoing primed adaptation. We found that prespacers are bound by both Cas1 (presumably, as part of the Cas1-Cas2 integrase) and Cas3, implying direct physical association of the interference and adaptation machineries as part of PAC.

Identifiants

pubmed: 34035168
pii: 2021291118
doi: 10.1073/pnas.2021291118
pmc: PMC8179228
pii:
doi:

Substances chimiques

Escherichia coli Proteins 0
Endonucleases EC 3.1.-
DNA Helicases EC 3.6.4.-

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : NIGMS NIH HHS
ID : R01 GM104071
Pays : United States

Informations de copyright

Copyright © 2021 the Author(s). Published by PNAS.

Déclaration de conflit d'intérêts

The authors declare no competing interest.

Références

Nature. 2020 Mar;579(7797):141-145
pubmed: 32076262
Science. 2018 Jul 6;361(6397):
pubmed: 29880725
Bioinformatics. 2014 Aug 1;30(15):2114-20
pubmed: 24695404
Science. 2007 Mar 23;315(5819):1709-12
pubmed: 17379808
Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6640-5
pubmed: 10829079
Nature. 2011 Sep 21;477(7365):486-489
pubmed: 21938068
Nat Methods. 2012 Mar 04;9(4):357-9
pubmed: 22388286
Nucleic Acids Res. 2014 May;42(9):5907-16
pubmed: 24728991
Nature. 2015 Mar 12;519(7542):193-8
pubmed: 25707795
Nature. 2015 Nov 26;527(7579):535-8
pubmed: 26503043
Mol Cell. 2016 Sep 1;63(5):852-64
pubmed: 27546790
Nucleic Acids Res. 2012 Jul;40(12):5569-76
pubmed: 22402487
Cell Host Microbe. 2019 Oct 9;26(4):515-526.e6
pubmed: 31585845
PLoS One. 2012;7(4):e35888
pubmed: 22558257
Nucleic Acids Res. 2014 Jul;42(12):7884-93
pubmed: 24920831
J Biol Chem. 2013 Aug 2;288(31):22184-92
pubmed: 23760266
Curr Protoc Mol Biol. 2007 Jul;Chapter 1:Unit 1.17
pubmed: 18265391
Nucleic Acids Res. 2015 Jul 13;43(12):6049-61
pubmed: 26013814
Mol Cell. 2018 May 3;70(3):385-394.e3
pubmed: 29706536
Annu Rev Genet. 2020 Nov 23;54:93-120
pubmed: 32857635
Nucleic Acids Res. 2020 Aug 20;48(14):8022-8034
pubmed: 32573735
Nucleic Acids Res. 2017 Apr 7;45(6):3297-3307
pubmed: 28204574
CRISPR J. 2018 Oct;1(5):325-336
pubmed: 31021272
Nucleic Acids Res. 2015 Dec 15;43(22):10848-60
pubmed: 26586803
Nature. 2014 Nov 6;515(7525):147-50
pubmed: 25118175
Nucleic Acids Res. 2020 Mar 18;48(5):2486-2501
pubmed: 31980818
Mol Microbiol. 2019 Jun;111(6):1558-1570
pubmed: 30875129
Nucleic Acids Res. 2014 Feb;42(4):2483-92
pubmed: 24265226
Cell Rep. 2017 Dec 26;21(13):3717-3727
pubmed: 29281822
Cell. 2017 Jun 29;170(1):48-60.e11
pubmed: 28666122
Cell. 2018 Nov 1;175(4):934-946.e15
pubmed: 30343903
Nat Struct Mol Biol. 2014 Sep;21(9):771-7
pubmed: 25132177
Nucleic Acids Res. 2011 Mar;39(6):2073-91
pubmed: 21097887
Proc Natl Acad Sci U S A. 2017 Jun 27;114(26):E5113-E5121
pubmed: 28438998
mBio. 2018 Dec 4;9(6):
pubmed: 30514784
Cell. 2015 Nov 5;163(4):854-65
pubmed: 26522594
Nat Commun. 2019 Dec 6;10(1):5302
pubmed: 31811138
Science. 2008 Dec 19;322(5909):1843-5
pubmed: 19095942
Nat Commun. 2019 Oct 10;10(1):4603
pubmed: 31601800
Nat Biotechnol. 2008 Dec;26(12):1367-72
pubmed: 19029910
Nucleic Acids Res. 2014 Jul;42(13):8516-26
pubmed: 24990370
Proc Natl Acad Sci U S A. 2011 Jun 21;108(25):10098-103
pubmed: 21646539
Bioinformatics. 2020 Apr 1;36(7):2272-2274
pubmed: 31821414
Nat Commun. 2016 Oct 03;7:12853
pubmed: 27694798
J Proteome Res. 2011 Apr 1;10(4):1794-805
pubmed: 21254760
mBio. 2018 Apr 17;9(2):
pubmed: 29666291
Proc Natl Acad Sci U S A. 2014 Jul 8;111(27):9798-803
pubmed: 24912165
Proc Natl Acad Sci U S A. 2014 Apr 22;111(16):E1629-38
pubmed: 24711427
Nat Struct Mol Biol. 2011 May;18(5):529-36
pubmed: 21460843
Proc Natl Acad Sci U S A. 2014 Nov 18;111(46):16359-64
pubmed: 25368186
Nucleic Acids Res. 2020 Jun 19;48(11):6120-6135
pubmed: 32421777
Nature. 2015 Apr 23;520(7548):505-510
pubmed: 25874675
Mol Cell. 2012 Jun 8;46(5):595-605
pubmed: 22521689
Nat Rev Microbiol. 2019 Jan;17(1):7-12
pubmed: 30171202
PLoS Genet. 2013;9(3):e1003312
pubmed: 23516369
Bioinformatics. 2014 Mar 1;30(5):614-20
pubmed: 24142950
RNA Biol. 2019 Apr;16(4):566-576
pubmed: 30157725
Nucleic Acids Res. 2015 Dec 15;43(22):10821-30
pubmed: 26578567
Trends Microbiol. 2020 Jul;28(7):543-553
pubmed: 32544441
Curr Opin Struct Biol. 2017 Apr;43:68-78
pubmed: 27912110
Science. 2008 Aug 15;321(5891):960-4
pubmed: 18703739
Nat Commun. 2012 Jul 10;3:945
pubmed: 22781758
Genes (Basel). 2019 Oct 31;10(11):
pubmed: 31683605
RNA. 2017 Oct;23(10):1525-1538
pubmed: 28724535
Proc Natl Acad Sci U S A. 2016 Jul 5;113(27):7626-31
pubmed: 27325762
Trends Biochem Sci. 2009 Aug;34(8):401-7
pubmed: 19646880
FEMS Microbiol Rev. 2015 May;39(3):428-41
pubmed: 25994611
Cell Rep. 2015 Mar 10;10(9):1534-1543
pubmed: 25753419
Proc Natl Acad Sci U S A. 2014 May 6;111(18):6618-23
pubmed: 24748111

Auteurs

Olga Musharova (O)

Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow 121205, Russia; O.Musharova@skoltech.ru severik@waksman.rutgers.edu.
Institute of Molecular Genetics, National Research Centre "Kurchatov Institute," Moscow 123182, Russia.

Sofia Medvedeva (S)

Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow 121205, Russia.

Evgeny Klimuk (E)

Institute of Molecular Genetics, National Research Centre "Kurchatov Institute," Moscow 123182, Russia.

Noemi Marco Guzman (NM)

Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow 121205, Russia.

Daria Titova (D)

Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow 121205, Russia.

Victor Zgoda (V)

Advanced Mass Spectrometry Core Facility, Skolkovo Institute of Science and Technology, Moscow 121205, Russia.

Anna Shiriaeva (A)

Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow 121205, Russia.
Research Center of Nanobiotechnologies, Peter the Great St. Petersburg Polytechnic University, St. Petersburg 195251, Russia.

Ekaterina Semenova (E)

Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854.

Konstantin Severinov (K)

Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow 121205, Russia; O.Musharova@skoltech.ru severik@waksman.rutgers.edu.
Institute of Molecular Genetics, National Research Centre "Kurchatov Institute," Moscow 123182, Russia.
Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854.

Ekaterina Savitskaya (E)

Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow 121205, Russia.
Institute of Molecular Genetics, National Research Centre "Kurchatov Institute," Moscow 123182, Russia.

Articles similaires

Prader-Willi Syndrome Humans Angelman Syndrome CRISPR-Cas Systems Human Embryonic Stem Cells
Female Biofilms Animals Lactobacillus Mice
Host Specificity Bacteriophages Genomics Algorithms Escherichia coli
Biofilms Horses Animals Escherichia coli Mesenchymal Stem Cells

Classifications MeSH