Prediction of strain level phage-host interactions across the Escherichia genus using only genomic information.


Journal

Nature microbiology
ISSN: 2058-5276
Titre abrégé: Nat Microbiol
Pays: England
ID NLM: 101674869

Informations de publication

Date de publication:
Nov 2024
Historique:
received: 06 12 2023
accepted: 13 09 2024
medline: 1 11 2024
pubmed: 1 11 2024
entrez: 1 11 2024
Statut: ppublish

Résumé

Predicting bacteriophage infection of specific bacterial strains promises advancements in phage therapy and microbial ecology. Whether the dynamics of well-established phage-host model systems generalize to the wide diversity of microbes is currently unknown. Here we show that we could accurately predict the outcomes of phage-bacteria interactions at the strain level in natural isolates from the genus Escherichia using only genomic data (area under the receiver operating characteristic curve (AUROC) of 86%). We experimentally established a dataset of interactions between 403 diverse Escherichia strains and 96 phages. Most interactions are explained by adsorption factors as opposed to antiphage systems which play a marginal role. We trained predictive algorithms and pinpoint poorly predicted interactions to direct future research efforts. Finally, we established a pipeline to recommend tailored phage cocktails, demonstrating efficiency on 100 pathogenic E. coli isolates. This work provides quantitative insights into phage-host specificity and supports the use of predictive algorithms in phage therapy.

Identifiants

pubmed: 39482383
doi: 10.1038/s41564-024-01832-5
pii: 10.1038/s41564-024-01832-5
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

2847-2861

Subventions

Organisme : Institut National de la Santé et de la Recherche Médicale (National Institute of Health and Medical Research)
ID : R21042KS/RSE22002KSA
Organisme : Institut National de la Santé et de la Recherche Médicale (National Institute of Health and Medical Research)
ID : R21042KS/RSE22002KSA
Organisme : Institut National de la Santé et de la Recherche Médicale (National Institute of Health and Medical Research)
ID : R21042KS/RSE22002KSA
Organisme : Institut National de la Santé et de la Recherche Médicale (National Institute of Health and Medical Research)
ID : R21042KS/RSE22002KSA
Organisme : Institut National de la Santé et de la Recherche Médicale (National Institute of Health and Medical Research)
ID : R21042KS/RSE22002KSA
Organisme : Institut National de la Santé et de la Recherche Médicale (National Institute of Health and Medical Research)
ID : R21042KS/RSE22002KSA
Organisme : EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
ID : PECAN 101040529
Organisme : EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
ID : PECAN 101040529
Organisme : EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
ID : PECAN 101040529
Organisme : EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
ID : PECAN 101040529
Organisme : EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
ID : PECAN 101040529
Organisme : EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
ID : PECAN 101040529
Organisme : Agence Nationale de la Recherche (French National Research Agency)
ID : ANR-19-AMRB-0002
Organisme : Agence Nationale de la Recherche (French National Research Agency)
ID : ANR-19-AMRB-0002
Organisme : Agence Nationale de la Recherche (French National Research Agency)
ID : ANR-20-CE92-0048
Organisme : Fondation pour la Recherche Médicale (Foundation for Medical Research in France)
ID : DEQ20161136698

Informations de copyright

© 2024. The Author(s), under exclusive licence to Springer Nature Limited.

Références

Kortright, K. E., Chan, B. K., Koff, J. L. & Turner, P. E. Phage therapy: a renewed approach to combat antibiotic-resistant bacteria. Cell Host Microbe 25, 219–232 (2019).
pubmed: 30763536 doi: 10.1016/j.chom.2019.01.014
Strathdee, S. A., Hatfull, G. F., Mutalik, V. K. & Schooley, R. T. Phage therapy: from biological mechanisms to future directions. Cell 186, 17–31 (2023).
pubmed: 36608652 doi: 10.1016/j.cell.2022.11.017
Lood, C. et al. Digital phagograms: predicting phage infectivity through a multilayer machine learning approach. Curr. Opin. Virol. 52, 174–181 (2022).
pubmed: 34952265 doi: 10.1016/j.coviro.2021.12.004
Nobrega, F. L. et al. Targeting mechanisms of tailed bacteriophages. Nat. Rev. Microbiol. 16, 760–773 (2018).
pubmed: 30104690 doi: 10.1038/s41579-018-0070-8
Georjon, H. & Bernheim, A. The highly diverse antiphage defence systems of bacteria. Nat. Rev. Microbiol. 21, 686–700 (2023).
pubmed: 37460672 doi: 10.1038/s41579-023-00934-x
Maffei, E. et al. Systematic exploration of Escherichia coli phage–host interactions with the BASEL phage collection. PLoS Biol. 19, e3001424 (2021).
pubmed: 34784345 doi: 10.1371/journal.pbio.3001424
Stanley, S. Y. & Maxwell, K. L. Phage-encoded anti-CRISPR defenses. Annu. Rev. Genet. 52, 445–464 (2018).
pubmed: 30208287 doi: 10.1146/annurev-genet-120417-031321
Krüger, D. H. & Bickle, T. A. Bacteriophage survival: multiple mechanisms for avoiding the deoxyribonucleic acid restriction systems of their hosts. Microbiol. Rev. 47, 345–360 (1983).
pubmed: 6314109 doi: 10.1128/mr.47.3.345-360.1983
Bertozzi Silva, J., Storms, Z. & Sauvageau, D. Host receptors for bacteriophage adsorption. FEMS Microbiol. Lett. 363, fnw002 (2016).
pubmed: 26755501 doi: 10.1093/femsle/fnw002
Tesson, F. et al. Systematic and quantitative view of the antiviral arsenal of prokaryotes. Nat. Commun. 13, 2561 (2022).
pubmed: 35538097 doi: 10.1038/s41467-022-30269-9
Piel, D. et al. Phage–host coevolution in natural populations. Nat. Microbiol. 7, 1075–1086 (2022).
pubmed: 35760840 doi: 10.1038/s41564-022-01157-1
Kauffman, K. M. et al. Resolving the structure of phage–bacteria interactions in the context of natural diversity. Nat. Commun. 13, 372 (2022).
pubmed: 35042853 doi: 10.1038/s41467-021-27583-z
Korf, I. H. E. et al. Still something to discover: novel insights into Escherichia coli phage diversity and taxonomy. Viruses 11, 454 (2019).
pubmed: 31109012 doi: 10.3390/v11050454
Walsh, S. K. et al. The host phylogeny determines viral infectivity and replication across Staphylococcus host species. PLoS Pathog. 19, e1011433 (2023).
pubmed: 37289828 doi: 10.1371/journal.ppat.1011433
Cuervo, A. et al. Structures of T7 bacteriophage portal and tail suggest a viral DNA retention and ejection mechanism. Nat. Commun. 10, 3746 (2019).
pubmed: 31431626 pmcid: 6702177 doi: 10.1038/s41467-019-11705-9
Hu, B., Margolin, W., Molineux, I. J. & Liu, J. The bacteriophage t7 virion undergoes extensive structural remodeling during infection. Science 339, 576–579 (2013).
pubmed: 23306440 doi: 10.1126/science.1231887
Suga, A., Kawaguchi, M., Yonesaki, T. & Otsuka, Y. Manipulating interactions between T4 phage long tail fibers and Escherichia coli receptors. Appl. Environ. Microbiol. 87, e0042321 (2021).
pubmed: 33893116 doi: 10.1128/AEM.00423-21
Srikant, S., Guegler, C. K. & Laub, M. T. The evolution of a counter-defense mechanism in a virus constrains its host range. Elife 11, e79549 (2022).
pubmed: 35924892 doi: 10.7554/eLife.79549
Abby, S. S., Néron, B., Ménager, H., Touchon, M. & Rocha, E. P. C. MacSyFinder: a program to mine genomes for molecular systems with an application to CRISPR-Cas systems. PLoS ONE 9, e110726 (2014).
pubmed: 25330359 doi: 10.1371/journal.pone.0110726
Néron, B. et al. MacSyFinder v2: improved modelling and search engine to identify molecular systems in genomes. Peer Community J. 3, e28 (2023).
Boeckaerts, D., Stock, M., De Baets, B. & Briers, Y. Identification of phage receptor-binding protein sequences with hidden Markov models and an extreme gradient boosting classifier. Viruses 14, 1329 (2022).
pubmed: 35746800 doi: 10.3390/v14061329
Pan, J. et al. GSPHI: a novel deep learning model for predicting phage–host interactions via multiple biological information. Comput. Struct. Biotechnol. J. 21, 3404–3413 (2023).
pubmed: 37397626 doi: 10.1016/j.csbj.2023.06.014
Wang, Y. et al. An effective model for predicting phage–host interactions via graph embedding representation learning with multi-head attention mechanism. IEEE J. Biomed. Health Inform. 27, 3061–3071 (2023).
pubmed: 37030796 doi: 10.1109/JBHI.2023.3261319
Boeckaerts, D. et al. Predicting bacteriophage hosts based on sequences of annotated receptor-binding proteins. Sci. Rep. 11, 1467 (2021).
pubmed: 33446856 doi: 10.1038/s41598-021-81063-4
Bajiya, N., Dhall, A., Aggarwal, S. & Raghava, G. P. S. Advances in the field of phage-based therapy with special emphasis on computational resources. Brief. Bioinform. 24, bbac574 (2023).
pubmed: 36575815 doi: 10.1093/bib/bbac574
Moller, A. G. et al. Genes influencing phage–host range in Staphylococcus aureus on a species-wide scale. mSphere 6, e01263–20 (2021).
pubmed: 33441407 doi: 10.1128/mSphere.01263-20
Beamud, B. et al. Genetic determinants of host tropism in Klebsiella phages. Cell Rep. 42, 112048 (2023).
pubmed: 36753420 doi: 10.1016/j.celrep.2023.112048
Haudiquet, M., Buffet, A., Rendueles, O. & Rocha, E. P. C. Interplay between the cell envelope and mobile genetic elements shapes gene flow in populations of the nosocomial pathogen Klebsiella pneumoniae. PLoS Biol. 19, e3001276 (2021).
pubmed: 34228700 doi: 10.1371/journal.pbio.3001276
Boeckaerts, D. et al. Prediction of Klebsiella phage–host specificity at the strain level. Nat. Commun. 15, 4355 (2024).
pubmed: 38778023 doi: 10.1038/s41467-024-48675-6
Keith, M. et al. Predictive phage therapy for Escherichia coli urinary tract infections: Cocktail selection for therapy based on machine learning models. Proc. Natl Acad. Sci. 121, e2313574121 (2024).
pubmed: 38478693 doi: 10.1073/pnas.2313574121
Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399, 629–655 (2022).
doi: 10.1016/S0140-6736(21)02724-0
Tenaillon, O., Skurnik, D., Picard, B. & Denamur, E. The population genetics of commensal Escherichia coli. Nat. Rev. Microbiol. 8, 207–217 (2010).
pubmed: 20157339 doi: 10.1038/nrmicro2298
Denamur, E., Clermont, O., Bonacorsi, S. & Gordon, D. The population genetics of pathogenic Escherichia coli. Nat. Rev. Microbiol. 19, 37–54 (2021).
pubmed: 32826992 doi: 10.1038/s41579-020-0416-x
Galardini, M. et al. Phenotype inference in an Escherichia coli strain panel. Elife 6, e31035 (2017).
pubmed: 29280730 doi: 10.7554/eLife.31035
Galardini, M. et al. Major role of iron uptake systems in the intrinsic extra-intestinal virulence of the genus Escherichia revealed by a genome-wide association study. PLoS Genet. 16, e1009065 (2020).
pubmed: 33112851 doi: 10.1371/journal.pgen.1009065
Bolduc, B. et al. vConTACT: an iVirus tool to classify double-stranded DNA viruses that infect Archaea and Bacteria. PeerJ 5, e3243 (2017).
pubmed: 28480138 doi: 10.7717/peerj.3243
O’Leary, N. A. et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 44, D733–D745 (2016).
pubmed: 26553804 doi: 10.1093/nar/gkv1189
Gaborieau, B. et al. Prediction of strain level phage-host interactions across the Escherichia genus using only genomic information. Zenodo https://doi.org/10.5281/zenodo.10202713 (2024).
Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14, 927–930 (2003).
doi: 10.1111/j.1654-1103.2003.tb02228.x
Smug, B. J., Szczepaniak, K., Rocha, E. P. C., Dunin-Horkawicz, S. & Mostowy, R. J. Ongoing shuffling of protein fragments diversifies core viral functions linked to interactions with bacterial hosts. Nat. Commun. 14, 7460 (2023).
Pas, C., Latka, A., Fieseler, L. & Briers, Y. Phage tailspike modularity and horizontal gene transfer reveals specificity towards E. coli O-antigen serogroups. Virol. J. 20, 174 (2023).
pubmed: 37550759 pmcid: 10408124 doi: 10.1186/s12985-023-02138-4
Sørensen, A. N., Woudstra, C., Sørensen, M. C. H. & Brøndsted, L. Subtypes of tail spike proteins predicts the host range of Ackermannviridae phages. Comput. Struct. Biotechnol. J. 19, 4854–4867 (2021).
pubmed: 34527194 pmcid: 8432352 doi: 10.1016/j.csbj.2021.08.030
Gencay, Y. E., Gambino, M., Prüssing, T. F. & Brøndsted, L. The genera of bacteriophages and their receptors are the major determinants of host range. Environ. Microbiol. 21, 2095–2111 (2019).
pubmed: 30888719 doi: 10.1111/1462-2920.14597
Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010).
Casjens, S. R. & Hendrix, R. W. Bacteriophage lambda: early pioneer and still relevant. Virology 0, 310–330 (2015).
doi: 10.1016/j.virol.2015.02.010
Guo, X., Yin, Y., Dong, C., Yang, G. & Zhou, G. On the class imbalance problem. In 2008 Fourth International Conference on Natural Computation 192–201 (IEEE, 2008).
Abedon, S. T., Danis-Wlodarczyk, K. M. & Wozniak, D. J. Phage cocktail development for bacteriophage therapy: toward improving spectrum of activity breadth and depth. Pharmaceuticals 14, 1019 (2021).
pubmed: 34681243 pmcid: 8541335 doi: 10.3390/ph14101019
Holtappels, D., Alfenas-Zerbini, P. & Koskella, B. Drivers and consequences of bacteriophage host range. FEMS Microbiol. Rev. 47, fuad038 (2023).
pubmed: 37422441 doi: 10.1093/femsre/fuad038
Rocha, E. P. C. & Bikard, D. Microbial defenses against mobile genetic elements and viruses: who defends whom from what? PLoS Biol. 20, e3001514 (2022).
pubmed: 35025885 doi: 10.1371/journal.pbio.3001514
Rousset, F. et al. Phages and their satellites encode hotspots of antiviral systems. Cell Host Microbe 30, 740–753.e5 (2022).
pubmed: 35316646 doi: 10.1016/j.chom.2022.02.018
Tesson, F. Genome assembly of the Escherichia Picard collection. figshare https://doi.org/10.6084/m9.figshare.25941691.v1 (2024).
La Combe, B. et al. Pneumonia-specific Escherichia coli with distinct phylogenetic and virulence profiles, France, 2012–2014. Emerg. Infect. Dis. 25, 710–718 (2019).
pubmed: 30882313 doi: 10.3201/eid2504.180944
Debarbieux, L. et al. Bacteriophages can treat and prevent Pseudomonas aeruginosa lung infections. J. Infect. Dis. 201, 1096–1104 (2010).
pubmed: 20196657 doi: 10.1086/651135
Maura, D. et al. Intestinal colonization by enteroaggregative Escherichia coli supports long-term bacteriophage replication in mice. Environ. Microbiol. 14, 1844–1854 (2012).
pubmed: 22118225 doi: 10.1111/j.1462-2920.2011.02644.x
Dufour, N., Debarbieux, L., Fromentin, M. & Ricard, J.-D. Treatment of highly virulent extraintestinal pathogenic Escherichia coli pneumonia with bacteriophages. Crit. Care Med. 43, e190–e198 (2015).
pubmed: 25803649 doi: 10.1097/CCM.0000000000000968
Dufour, N. et al. Bacteriophage LM33_P1, a fast-acting weapon against the pandemic ST131-O25b:H4 Escherichia coli clonal complex. J. Antimicrob. Chemother. 71, 3072–3080 (2016).
pubmed: 27387322 doi: 10.1093/jac/dkw253
Galtier, M. et al. Bacteriophages to reduce gut carriage of antibiotic resistant uropathogens with low impact on microbiota composition. Environ. Microbiol. 18, 2237–2245 (2016).
pubmed: 26971586 doi: 10.1111/1462-2920.13284
Galtier, M. et al. Bacteriophages targeting adherent invasive Escherichia coli strains as a promising new treatment for Crohn’s disease. J. Crohns Colitis 11, 840–847 (2017).
pubmed: 28130329
De Sordi, L., Khanna, V. & Debarbieux, L. The gut microbiota facilitates drifts in the genetic diversity and infectivity of bacterial viruses. Cell Host Microbe 22, 801–808.e3 (2017).
pubmed: 29174401 doi: 10.1016/j.chom.2017.10.010
Lourenço, M. et al. The spatial heterogeneity of the gut limits predation and fosters coexistence of bacteria and bacteriophages. Cell Host Microbe 28, 390–401.e5 (2020).
pubmed: 32615090 doi: 10.1016/j.chom.2020.06.002
Chiu, C.-L., Clack, N. & The napari Community napari: a Python multi-dimensional image viewer platform for the research community. Microsc. Microanal. 28, 1576–1577 (2022).
doi: 10.1017/S1431927622006328
Gaborieau, B. et al. Prediction of strain level phage–host interactions across the Escherichia genus using only genomic information. GitHub https://github.com/mdmparis/coli_phage_interactions_2023 (2024).
Lamy-Besnier, Q., Brancotte, B., Ménager, H. & Debarbieux, L. Viral Host Range database, an online tool for recording, analyzing and disseminating virus–host interactions. Bioinformatics 37, 2798–2801 (2021).
pubmed: 33594411 doi: 10.1093/bioinformatics/btab070
Trivedi, U. H. et al. Quality control of next-generation sequencing data without a reference. Front. Genet. 5, 111 (2014).
pubmed: 24834071 doi: 10.3389/fgene.2014.00111
Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).
pubmed: 22506599 doi: 10.1089/cmb.2012.0021
Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).
pubmed: 24642063 doi: 10.1093/bioinformatics/btu153
Jolley, K. A., Bray, J. E. & Maiden, M. C. J. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res. 3, 124 (2018).
pubmed: 30345391 doi: 10.12688/wellcomeopenres.14826.1
Beghain, J., Bridier-Nahmias, A., Le Nagard, H., Denamur, E. & Clermont, O. ClermonTyping: an easy-to-use and accurate in silico method for Escherichia genus strain phylotyping. Microb. Genom. 4, e000192 (2018).
pubmed: 29916797
Perrin, A. & Rocha, E. P. C. PanACoTA: a modular tool for massive microbial comparative genomics. NAR Genom. Bioinform. 3, lqaa106 (2021).
pubmed: 33575648
Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49, W293–W296 (2021).
pubmed: 33885785 doi: 10.1093/nar/gkab301
Moraru, C., Varsani, A. & Kropinski, A. M. VIRIDIC–a novel tool to calculate the intergenomic similarities of prokaryote-infecting viruses. Viruses 12, 1268 (2020).
pubmed: 33172115 pmcid: 7694805 doi: 10.3390/v12111268
Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).
pubmed: 14597658 pmcid: 403769 doi: 10.1101/gr.1239303
Bessonov, K. et al. ECTyper: in silico Escherichia coli serotype and species prediction from raw and assembled whole-genome sequence data. Microb. Genom. 7, 000728 (2021).
pubmed: 34860150
Rendueles, O., Garcia-Garcerà, M., Néron, B., Touchon, M. & Rocha, E. P. C. Abundance and co-occurrence of extracellular capsules increase environmental breadth: implications for the emergence of pathogens. PLoS Pathog. 13, e1006525 (2017).
pubmed: 28742161 doi: 10.1371/journal.ppat.1006525
Mirdita, M., Steinegger, M. & Söding, J. MMseqs2 desktop and local web server app for fast, interactive sequence searches. Bioinformatics 35, 2856–2858 (2019).
pubmed: 30615063 pmcid: 6691333 doi: 10.1093/bioinformatics/bty1057
Lam, M. M. C., Wick, R. R., Judd, L. M., Holt, K. E. & Wyres, K. L. Kaptive 2.0: updated capsule and lipopolysaccharide locus typing for the Klebsiella pneumoniae species complex. Microb. Genom. 8, 000800 (2022).
pubmed: 35311639
Rodríguez-Gironés, M. A. & Santamaría, L. A new algorithm to calculate the nestedness temperature of presence–absence matrices. J. Biogeogr. 33, 924–935 (2006).
doi: 10.1111/j.1365-2699.2006.01444.x
Barber, M. J. Modularity and community detection in bipartite networks. Phys. Rev. E 76, 066102 (2007).
doi: 10.1103/PhysRevE.76.066102
McInnes, L., Healy, J., Saul, N. & Großberger, L. UMAP: Uniform Manifold Approximation and Projection. J. Open Source Softw. 3, 861 (2018).
doi: 10.21105/joss.00861
Eddy, S. R. Accelerated Profile HMM Searches. PLoS Comput. Biol. 7, e1002195 (2011).
pubmed: 22039361 doi: 10.1371/journal.pcbi.1002195
Mistry, J. et al. Pfam: the protein families database in 2021. Nucleic Acids Res. 49, D412–D419 (2021).
pubmed: 33125078 doi: 10.1093/nar/gkaa913
Lin, Z. et al. Evolutionary-scale prediction of atomic-level protein structure with a language model. Science 379, 1123–1130 (2023).
pubmed: 36927031 doi: 10.1126/science.ade2574
van Kempen, M. et al. Fast and accurate protein structure search with Foldseek. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01773-0 (2023).
Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825−2830 (2011).
Stock, M., Pahikkala, T., Airola, A., Waegeman, W. & De Baets, B. Algebraic shortcuts for leave-one-out cross-validation in supervised network inference. Brief. Bioinform. 21, 262–271 (2020).
pubmed: 30329015
Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).
pubmed: 32015543 pmcid: 7056644 doi: 10.1038/s41592-019-0686-2
Baptiste, G., Hugo, V & Florian, T. Prediction of strain level phage–host interactions across the Escherichia genus using only genomic information code and analysis. Zenodo https://doi.org/10.5281/zenodo.13831957 (2024).
Gilchrist, C. L. M. & Chooi, Y.-H. clinker & clustermap.js: automatic generation of gene cluster comparison figures. Bioinformatics 37, 2473–2475 (2021).
pubmed: 33459763 doi: 10.1093/bioinformatics/btab007

Auteurs

Baptiste Gaborieau (B)

Université Paris Cité, INSERM, UMR1137, IAME, Paris, France. baptiste.gaborieau@aphp.fr.
AP-HP, Hôpital Louis Mourier, DMU ESPRIT, Service de Médecine Intensive Réanimation, Colombes, France. baptiste.gaborieau@aphp.fr.
Institut Pasteur, Université Paris Cité, CNRS UMR6047, Microbiologie Intégrative et Moléculaire, Bacteriophage Bacterium Host, Paris, France. baptiste.gaborieau@aphp.fr.

Hugo Vaysset (H)

AgroParisTech, Université Paris-Saclay, Paris, France.
Institut Pasteur, Université Paris Cité, INSERM U1284, SEED, Molecular Diversity of Microbes lab, Paris, France.
Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, Paris, France.

Florian Tesson (F)

Université Paris Cité, INSERM, UMR1137, IAME, Paris, France.
Institut Pasteur, Université Paris Cité, INSERM U1284, SEED, Molecular Diversity of Microbes lab, Paris, France.

Inès Charachon (I)

Université Paris Cité, INSERM, UMR1137, IAME, Paris, France.

Nicolas Dib (N)

Université Paris Cité, INSERM, UMR1137, IAME, Paris, France.

Juliette Bernier (J)

Université Paris Cité, INSERM, UMR1137, IAME, Paris, France.

Tanguy Dequidt (T)

Institut Pasteur, Université Paris Cité, CNRS UMR6047, Microbiologie Intégrative et Moléculaire, Bacteriophage Bacterium Host, Paris, France.

Héloïse Georjon (H)

Institut Pasteur, Université Paris Cité, INSERM U1284, SEED, Molecular Diversity of Microbes lab, Paris, France.

Olivier Clermont (O)

Université Paris Cité, INSERM, UMR1137, IAME, Paris, France.

Pascal Hersen (P)

Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, Paris, France.

Laurent Debarbieux (L)

Institut Pasteur, Université Paris Cité, CNRS UMR6047, Microbiologie Intégrative et Moléculaire, Bacteriophage Bacterium Host, Paris, France.

Jean-Damien Ricard (JD)

Université Paris Cité, INSERM, UMR1137, IAME, Paris, France.
AP-HP, Hôpital Louis Mourier, DMU ESPRIT, Service de Médecine Intensive Réanimation, Colombes, France.

Erick Denamur (E)

Université Paris Cité, INSERM, UMR1137, IAME, Paris, France.
AP-HP, Hôpital Bichat, Laboratoire de Génétique Moléculaire, Paris, France.

Aude Bernheim (A)

Institut Pasteur, Université Paris Cité, INSERM U1284, SEED, Molecular Diversity of Microbes lab, Paris, France. aude.bernheim@pasteur.fr.

Articles similaires

Selecting optimal software code descriptors-The case of Java.

Yegor Bugayenko, Zamira Kholmatova, Artem Kruglov et al.
1.00
Software Algorithms Programming Languages
Coal Metagenome Phylogeny Bacteria Genome, Bacterial
Genome, Viral Ralstonia Composting Solanum lycopersicum Bacteriophages
1.00
Humans Magnetic Resonance Imaging Brain Infant, Newborn Infant, Premature

Classifications MeSH