Elucidating distinct clinico-radiologic signatures in the borderland between neuromyelitis optica and multiple sclerosis.


Journal

Journal of neurology
ISSN: 1432-1459
Titre abrégé: J Neurol
Pays: Germany
ID NLM: 0423161

Informations de publication

Date de publication:
Jan 2022
Historique:
received: 04 01 2021
accepted: 18 05 2021
revised: 14 05 2021
pubmed: 28 5 2021
medline: 11 1 2022
entrez: 27 5 2021
Statut: ppublish

Résumé

Separating antibody-negative neuromyelitis optica spectrum disorders (NMOSD) from multiple sclerosis (MS) in borderline cases is extremely challenging due to lack of biomarkers. Elucidating different pathologies within the likely heterogenous antibody-negative NMOSD/MS overlap syndrome is, therefore, a major unmet need which would help avoid disability from inappropriate treatment. In this study we aimed to identify distinct subgroups within the antibody-negative NMOSD/MS overlap syndrome. Twenty-five relapsing antibody-negative patients with NMOSD features underwent a prospective brain and spinal cord MRI. Subgroups were identified by an unsupervised algorithm based on pre-selected NMOSD/MS discriminators. Four subgroups were identified. Patients from Group 1 termed "MS-like" (n = 6) often had central vein sign and cortical lesions (83% and 67%, respectively). All patients from Group 2 ("spinal MS-like", 8) had short-segment myelitis and no MS-like brain lesions. Group 3 ("classic NMO-like", 6) had high percentage of bilateral optic neuritis and longitudinally extensive transverse myelitis (LETM, 80% and 60%, respectively) and normal brain appearance (100%). Group 4 ("NMO-like with brain involvement", 5) typically had a history of NMOSD-like brain lesions and LETM. When compared with other groups, Group 4 had significantly decreased fractional anisotropy in non-lesioned tracts (0.46 vs. 0.49, p = 0.003) and decreased thalamus volume (0.84 vs. 0.98, p = 0.04). NMOSD/MS cohort contains distinct subgroups likely corresponding to different pathologies and requiring tailored treatment. We propose that non-conventional MRI might help optimise diagnosis in these challenging patients.

Sections du résumé

BACKGROUND BACKGROUND
Separating antibody-negative neuromyelitis optica spectrum disorders (NMOSD) from multiple sclerosis (MS) in borderline cases is extremely challenging due to lack of biomarkers. Elucidating different pathologies within the likely heterogenous antibody-negative NMOSD/MS overlap syndrome is, therefore, a major unmet need which would help avoid disability from inappropriate treatment.
OBJECTIVE OBJECTIVE
In this study we aimed to identify distinct subgroups within the antibody-negative NMOSD/MS overlap syndrome.
METHODS METHODS
Twenty-five relapsing antibody-negative patients with NMOSD features underwent a prospective brain and spinal cord MRI. Subgroups were identified by an unsupervised algorithm based on pre-selected NMOSD/MS discriminators.
RESULTS RESULTS
Four subgroups were identified. Patients from Group 1 termed "MS-like" (n = 6) often had central vein sign and cortical lesions (83% and 67%, respectively). All patients from Group 2 ("spinal MS-like", 8) had short-segment myelitis and no MS-like brain lesions. Group 3 ("classic NMO-like", 6) had high percentage of bilateral optic neuritis and longitudinally extensive transverse myelitis (LETM, 80% and 60%, respectively) and normal brain appearance (100%). Group 4 ("NMO-like with brain involvement", 5) typically had a history of NMOSD-like brain lesions and LETM. When compared with other groups, Group 4 had significantly decreased fractional anisotropy in non-lesioned tracts (0.46 vs. 0.49, p = 0.003) and decreased thalamus volume (0.84 vs. 0.98, p = 0.04).
CONCLUSIONS CONCLUSIONS
NMOSD/MS cohort contains distinct subgroups likely corresponding to different pathologies and requiring tailored treatment. We propose that non-conventional MRI might help optimise diagnosis in these challenging patients.

Identifiants

pubmed: 34043042
doi: 10.1007/s00415-021-10619-1
pii: 10.1007/s00415-021-10619-1
pmc: PMC8738499
doi:

Substances chimiques

Aquaporin 4 0
Autoantibodies 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

269-279

Subventions

Organisme : Wellcome Trust
Pays : United Kingdom
Organisme : Oxford University Hospitals NHS Foundation Trust (GB)
ID : A20069

Informations de copyright

© 2021. The Author(s).

Références

Wingerchuk DM, Hogancamp WF, O’Brien PC, Weinshenker BG (1999) The clinical course of neuromyelitis optica (Devic’s syndrome). Neurology 53:1107–1107. https://doi.org/10.1212/WNL.53.5.1107
doi: 10.1212/WNL.53.5.1107 pubmed: 10496275
Lennon VA, Wingerchuk DM, Kryzer TJ et al (2004) A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis. Lancet 364:2106–2112
doi: 10.1016/S0140-6736(04)17551-X
Lennon VA, Kryzer TJ, Pittock SJ et al (2005) IgG marker of optic-spinal multiple sclerosis binds to the aquaporin-4 water channel. J Exp Med 202:473–477. https://doi.org/10.1084/jem.20050304
doi: 10.1084/jem.20050304 pubmed: 16087714 pmcid: 2212860
Wingerchuk DM, Lennon VA, Lucchinetti CF et al (2007) The spectrum of neuromyelitis optica. Lancet Neurol 6:805–815. https://doi.org/10.1016/S1474-4422(07)70216-8
doi: 10.1016/S1474-4422(07)70216-8 pubmed: 17706564
Mader S, Gredler V, Schanda K et al (2011) Complement activating antibodies to myelin oligodendrocyte glycoprotein in neuromyelitis optica and related disorders. J Neuroinflammation 8:184. https://doi.org/10.1186/1742-2094-8-184
doi: 10.1186/1742-2094-8-184 pubmed: 22204662 pmcid: 3278385
Kitley J, Woodhall M, Waters P et al (2012) Myelin-oligodendrocyte glycoprotein antibodies in adults with a neuromyelitis optica phenotype. Neurology 79:1273–1277. https://doi.org/10.1212/WNL.0b013e31826aac4e
doi: 10.1212/WNL.0b013e31826aac4e pubmed: 22914827
Jurynczyk M, Geraldes R, Probert F et al (2017) Distinct brain imaging characteristics of autoantibody-mediated CNS conditions and multiple sclerosis. Brain 140:617–627. https://doi.org/10.1093/brain/aww350
doi: 10.1093/brain/aww350 pubmed: 28364548
Matthews L, Marasco R, Jenkinson M et al (2013) Distinction of seropositive NMO spectrum disorder and MS brain lesion distribution. Neurology 81:1966. https://doi.org/10.1212/01.wnl.0000436079.95856.1f
doi: 10.1212/01.wnl.0000436079.95856.1f
Juryńczyk M, Tackley G, Kong Y et al (2017) Brain lesion distribution criteria distinguish MS from AQP4-antibody NMOSD and MOG-antibody disease. J Neurol Neurosurg Psychiatry. https://doi.org/10.1136/jnnp-2016-314005
doi: 10.1136/jnnp-2016-314005 pubmed: 27951522
Juryńczyk M, Weinshenker B, Akman-Demir G et al (2015) Status of diagnostic approaches to AQP4-IgG seronegative NMO and NMO/MS overlap syndromes. J Neurol 263:140–149. https://doi.org/10.1007/s00415-015-7952-8
doi: 10.1007/s00415-015-7952-8 pubmed: 26530512 pmcid: 4816597
Thompson AJ, Banwell BL, Barkhof F et al (2018) Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol 17:162–173. https://doi.org/10.1016/S1474-4422(17)30470-2
doi: 10.1016/S1474-4422(17)30470-2 pubmed: 29275977
Jarius S, Ruprecht K, Kleiter I et al (2016) MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 2: epidemiology, clinical presentation, radiological and laboratory features, treatment responses, and long-term outcome. J Neuroinflamm. https://doi.org/10.1186/s12974-016-0718-0
doi: 10.1186/s12974-016-0718-0
Jurynczyk M, Messina S, Woodhall MR et al (2017) Clinical presentation and prognosis in MOG-antibody disease: a UK study. Brain 140:3128–3138. https://doi.org/10.1093/brain/awx276
doi: 10.1093/brain/awx276 pubmed: 29136091
Cacciaguerra L, Meani A, Mesaros S et al (2019) Brain and cord imaging features in neuromyelitis optica spectrum disorders. Ann Neurol 85:371–384. https://doi.org/10.1002/ana.25411
doi: 10.1002/ana.25411 pubmed: 30635936
Wingerchuk DM, Banwell B, Bennett JL et al (2015) International consensus diagnostic criteria for neuromyelitis optica spectrum disorders. Neurology 85:177–189. https://doi.org/10.1212/WNL.0000000000001729
doi: 10.1212/WNL.0000000000001729 pubmed: 26092914 pmcid: 4515040
Kleiter I, Hellwig K, Berthele A et al (2012) Failure of natalizumab to prevent relapses in neuromyelitis optica. Arch Neurol 69:239–245. https://doi.org/10.1001/archneurol.2011.216
doi: 10.1001/archneurol.2011.216 pubmed: 22332191
Palace J, Leite MI, Nairne A, Vincent A (2010) Interferon Beta treatment in neuromyelitis optica: increase in relapses and aquaporin 4 antibody titers. Arch Neurol 67:1016–1017. https://doi.org/10.1001/archneurol.2010.188
doi: 10.1001/archneurol.2010.188 pubmed: 20697055
Sati P, Oh J, Todd Constable R et al (2016) The central vein sign and its clinical evaluation for the diagnosis of multiple sclerosis: a consensus statement from the North American imaging in multiple sclerosis cooperative. Nat Rev Neurol 12:714–722. https://doi.org/10.1038/nrneurol.2016.166
doi: 10.1038/nrneurol.2016.166 pubmed: 27834394
Smith SM, Zhang Y, Jenkinson M et al (2002) Accurate, robust, and automated longitudinal and cross-sectional brain change analysis. Neuroimage 17:479–489. https://doi.org/10.1006/nimg.2002.1040
doi: 10.1006/nimg.2002.1040 pubmed: 12482100
Patenaude B, Smith SM, Kennedy DN, Jenkinson M (2011) A Bayesian model of shape and appearance for subcortical brain segmentation. Neuroimage 56:907–922. https://doi.org/10.1016/j.neuroimage.2011.02.046
doi: 10.1016/j.neuroimage.2011.02.046 pubmed: 21352927
Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis: I segmentation and surface reconstruction. Neuroimage 9:179–194. https://doi.org/10.1006/nimg.1998.0395
doi: 10.1006/nimg.1998.0395
Wakana S, Jiang H, Nagae-Poetscher LM et al (2004) Fiber tract-based atlas of human white matter anatomy. Radiology 230:77–87. https://doi.org/10.1148/radiol.2301021640
doi: 10.1148/radiol.2301021640 pubmed: 14645885
De Leener B, Lévy S, Dupont SM et al (2017) SCT: spinal cord toolbox, an open-source software for processing spinal cord MRI data. Neuroimage 145:24–43. https://doi.org/10.1016/j.neuroimage.2016.10.009
doi: 10.1016/j.neuroimage.2016.10.009 pubmed: 27720818
Filippi M, Cercignani M, Inglese M et al (2001) Diffusion tensor magnetic resonance imaging in multiple sclerosis. Neurology 56:304–311. https://doi.org/10.1212/WNL.56.3.304
doi: 10.1212/WNL.56.3.304 pubmed: 11171893
Ciccarelli O, Werring DJ, Wheeler-Kingshott CAM et al (2001) Investigation of MS normal-appearing brain using diffusion tensor MRI with clinical correlations. Neurology 56:926–933. https://doi.org/10.1212/WNL.56.7.926
doi: 10.1212/WNL.56.7.926 pubmed: 11294931
Cercignani M, Inglese M, Pagani E et al (2001) Mean diffusivity and fractional anisotropy histograms of patients with multiple sclerosis. Am J Neuroradiol 22:952–958
pubmed: 11337342 pmcid: 8174941
Tallantyre EC, Dixon JE, Donaldson I et al (2011) Ultra-high-field imaging distinguishes MS lesions from asymptomatic white matter lesions. Neurology 76:534–539. https://doi.org/10.1212/WNL.0b013e31820b7630
doi: 10.1212/WNL.0b013e31820b7630 pubmed: 21300968 pmcid: 3053180
Kitley J, Evangelou N, Küker W et al (2014) Catastrophic brain relapse in seronegative NMO after a single dose of natalizumab. J Neurol Sci. https://doi.org/10.1016/j.jns.2014.01.035
doi: 10.1016/j.jns.2014.01.035 pubmed: 24576801
Yamamura T, Kleiter I, Fujihara K et al (2019) Trial of satralizumab in neuromyelitis optica spectrum disorder. N Engl J Med 381:2114–2124. https://doi.org/10.1056/NEJMoa1901747
doi: 10.1056/NEJMoa1901747 pubmed: 31774956
Traboulsee A, Greenberg BM, Bennett JL et al (2020) Safety and efficacy of satralizumab monotherapy in neuromyelitis optica spectrum disorder: a randomised, double-blind, multicentre, placebo-controlled phase 3 trial. Lancet Neurol 19:402–412. https://doi.org/10.1016/S1474-4422(20)30078-8
doi: 10.1016/S1474-4422(20)30078-8 pubmed: 32333898 pmcid: 7935419
Cree BAC, Bennett JL, Kim HJ et al (2019) Inebilizumab for the treatment of neuromyelitis optica spectrum disorder (N-MOmentum): a double-blind, randomised placebo-controlled phase 2/3 trial. Lancet 394:1352–1363. https://doi.org/10.1016/S0140-6736(19)31817-3
doi: 10.1016/S0140-6736(19)31817-3 pubmed: 31495497
Calabrese M, Oh MS, Favaretto A et al (2012) No MRI evidence of cortical lesions in neuromyelitis optica. Neurology 79:1671–1676. https://doi.org/10.1212/WNL.0b013e31826e9a96
doi: 10.1212/WNL.0b013e31826e9a96 pubmed: 22993282
Cortese R, Magnollay L, Tur C et al (2018) Value of the central vein sign at 3T to differentiate MS from seropositive NMOSD. Neurology 90:e1183–e1190. https://doi.org/10.1212/WNL.0000000000005256
doi: 10.1212/WNL.0000000000005256 pubmed: 29514948
Kremer S, Renard F, Achard S et al (2015) Use of advanced magnetic resonance imaging techniques in neuromyelitis optica spectrum disorder. JAMA Neurol 72:815. https://doi.org/10.1001/jamaneurol.2015.0248
doi: 10.1001/jamaneurol.2015.0248 pubmed: 26010909 pmcid: 4828237
O’Connell K, Hamilton-Shield A, Woodhall M et al (2020) Prevalence and incidence of neuromyelitis optica spectrum disorder, aquaporin-4 antibody-positive NMOSD and MOG antibody-positive disease in Oxfordshire, UK. J Neurol Neurosurg Psychiatry 91:1126–1128. https://doi.org/10.1136/jnnp-2020-323158
doi: 10.1136/jnnp-2020-323158 pubmed: 32576617
Wingerchuk D, Banwell B, Bennett J et al (2014) Revised diagnostic criteria for neuromyeltiis optica spectrum disorders. Neurology 82:S63.001
Asnafi S, Morris PP, Sechi E et al (2020) The frequency of longitudinally extensive transverse myelitis in MS: a population-based study. Mult Scler Relat Disord 37:101487. https://doi.org/10.1016/j.msard.2019.101487
doi: 10.1016/j.msard.2019.101487 pubmed: 31707235

Auteurs

Maciej Juryńczyk (M)

Department of Clinical Neurology, Nuffield Department of Clinical Neuroscienes, University of Oxford, Oxford, UK. m.jurynczyk@nencki.edu.pl.
Laboratory of Brain Imaging, Neurobiology Center, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland. m.jurynczyk@nencki.edu.pl.

Elżbieta Klimiec-Moskal (E)

Department of Clinical Neurology, Nuffield Department of Clinical Neuroscienes, University of Oxford, Oxford, UK.
Department of Neurology, Jagiellonian University Medical College, Kraków, Poland.

Yazhuo Kong (Y)

Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China.
Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China.

Samuel Hurley (S)

Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.

Silvia Messina (S)

Department of Clinical Neurology, Nuffield Department of Clinical Neuroscienes, University of Oxford, Oxford, UK.

Tianrong Yeo (T)

Department of Clinical Neurology, Nuffield Department of Clinical Neuroscienes, University of Oxford, Oxford, UK.

Mark Jenkinson (M)

Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.

Maria Isabel Leite (MI)

Department of Clinical Neurology, Nuffield Department of Clinical Neuroscienes, University of Oxford, Oxford, UK.

Jacqueline Palace (J)

Department of Clinical Neurology, Nuffield Department of Clinical Neuroscienes, University of Oxford, Oxford, UK. jacqueline.palace@ndnc.ox.ac.uk.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH