Aged landfill leachate enhances anaerobic digestion of waste activated sludge.

Acidogenesis Anaerobic digestion Biogas Hydrolysis Landfill leachate Waste activated sludge

Journal

Journal of environmental management
ISSN: 1095-8630
Titre abrégé: J Environ Manage
Pays: England
ID NLM: 0401664

Informations de publication

Date de publication:
01 Sep 2021
Historique:
received: 20 02 2021
revised: 08 05 2021
accepted: 18 05 2021
pubmed: 28 5 2021
medline: 22 7 2021
entrez: 27 5 2021
Statut: ppublish

Résumé

Anaerobic digestion (AD) is considered as a sustainable pathway to recover energy from organic wastes, but the digestive efficiency for waste activated sludge (WAS) is not as expected due to the limitations in WAS hydrolysis. This study proposes an effective strategy to simultaneously treat WAS and landfill leachate, aiming to promote WAS hydrolysis and enhance organics converting to methane. The effects of landfill leachate on the four stages (i.e., solubilization, hydrolysis, acidogenesis, and methanogenesis) of AD of WAS, as well as the effect mechanisms were investigated. Results showed that adding appropriate amounts of landfill leachate could promote the steps of solubilization, hydrolysis and acidogenesis of WAS, but had no-effect on methanogenesis. The hydrolysis and acidogenesis efficiency in the leachate added digesters were 2.0%-8.4% and 35.2%-72.7% higher than the control digester. Mechanism studies indicated that humic acid (HA) contained in the leachate was conducive to the processes of both hydrolysis and acidogenesis, but detrimental to the methanogenesis. Effects of heavy metals (HMs) on AD of WAS was also dose-dependent. Digestive performance was inhibited by excessive HMs but promoted by moderate dosages. Humic acid and metal ions tend to interact to form complexes, and thus relieve their each inhibition effects. It is also found that the stability of sludge flocs was reduced by the leachate through reducing both apparent activation energy (AAE) and median particle size (MPS) of the sludge. Microbial community and diversity results revealed that the relative abundance of microbes responsible for hydrolysis and acidogenesis increased when landfill leachate was present. This research provides a more technically and economically feasible approach to co-treating and co-utilizing WAS and landfill leachate.

Identifiants

pubmed: 34044237
pii: S0301-4797(21)00915-4
doi: 10.1016/j.jenvman.2021.112853
pii:
doi:

Substances chimiques

Sewage 0
Water Pollutants, Chemical 0
Methane OP0UW79H66

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

112853

Informations de copyright

Copyright © 2021 Elsevier Ltd. All rights reserved.

Auteurs

Meng Gao (M)

Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China.

Siqi Li (S)

Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China.

Huijing Zou (H)

Hunan Architectural Design Institute Co., Ltd, Hunan, 410125, PR China.

Fushan Wen (F)

Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China.

Anrong Cai (A)

Chongqing Yuxi Water Co., Ltd, Chongqing, 400045, PR China.

Ruilin Zhu (R)

Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China.

Wenjing Tian (W)

Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China.

Dezhi Shi (D)

Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China.

Hongxiang Chai (H)

Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China.

Li Gu (L)

Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China. Electronic address: guli@cqu.edu.cn.

Articles similaires

Nigeria Environmental Monitoring Solid Waste Waste Disposal Facilities Refuse Disposal

Hydrochemical characterization and pCO

Kunarika Bhanot, M K Sharma, R D Kaushik
1.00
Rivers Environmental Monitoring Carbon Dioxide Water Pollutants, Chemical India
Wetlands Massachusetts Chlorides Groundwater Environmental Monitoring
1.00
Iran Drinking Water Humans Lithium Suicide, Attempted

Classifications MeSH