Hydrochemical characterization and pCO

Alaknanda River Chemical weathering Open and closed system Partial pressure of CO2 Spatial and temporal variations

Journal

Environmental monitoring and assessment
ISSN: 1573-2959
Titre abrégé: Environ Monit Assess
Pays: Netherlands
ID NLM: 8508350

Informations de publication

Date de publication:
31 Oct 2024
Historique:
received: 16 08 2024
accepted: 22 10 2024
medline: 31 10 2024
pubmed: 31 10 2024
entrez: 31 10 2024
Statut: epublish

Résumé

Chemical weathering processes are becoming increasingly important in studies on carbon cycling because they are responsible for increased solute fluxes in the proglacial zone, can effectively sequester atmospheric CO

Identifiants

pubmed: 39477890
doi: 10.1007/s10661-024-13310-w
pii: 10.1007/s10661-024-13310-w
doi:

Substances chimiques

Carbon Dioxide 142M471B3J
Water Pollutants, Chemical 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1138

Informations de copyright

© 2024. The Author(s), under exclusive licence to Springer Nature Switzerland AG.

Références

Abdi, H. Williams., LJ (2010). Principal component analysis. Wiley Interdisciplinary Reviews: Computational Statistics.
Ahearn, D. S., Sheibley, R. W., Dahlgren, R. A., & Keller, K. E. (2004). Temporal dynamics of stream water chemistry in the last free-flowing river draining the western Sierra Nevada. California. Journal of Hydrology, 295(1–4), 47–63.
doi: 10.1016/j.jhydrol.2004.02.016
Alin, S. R., de Fátima FL Rasera, M., Salimon, C. I., Richey, J. E., Holtgrieve, G. W., Krusche, A. V., & Snidvongs, A. (2011). Physical controls on carbon dioxide transfer velocity and flux in low‐gradient river systems and implications for regional carbon budgets. Journal of Geophysical Research: Biogeosciences, 116(G1).
Almeida, R. M., Pacheco, F. S., Barros, N., Rosi, E., & Roland, F. (2017). Extreme floods increase CO2 outgassing from a large Amazonian River. Limnology and Oceanography, 62(3), 989–999.
doi: 10.1002/lno.10480
American Public Health Association (APHA), 2012. Standard Methods for examination of water and wastewater. 22nd ed. Washington 1360, pp. ISBN 978–087553–013–0.
Ayed, B., Jmal, I., Sahal, S., Mokadem, N., Saidi, S., Boughariou, E., & Bouri, S. (2017). Hydrochemical characterization of groundwater using multivariate statistical analysis: The Maritime Djeffara shallow aquifer (Southeastern Tunisia). Environmental Earth Sciences, 76, 1–22.
doi: 10.1007/s12665-017-7168-6
Bahukhandi, K. D. ISSN 0975–413X CODEN (USA): PCHHAX.
Banks, E. W., Simmons, C. T., Love, A. J., & Shand, P. (2011). Assessing spatial and temporal connectivity between surface water and groundwater in a regional catchment: Implications for regional scale water quantity and quality. Journal of Hydrology, 404(1–2), 30–49.
doi: 10.1016/j.jhydrol.2011.04.017
Bartarya, S. K., & Bahukhandi, D. K. (2012). Impact assessment of urbanization and industrialization on surface and groundwater quality. Global Journal of Engineering Design & Technology, 1(1), 11–22.
Barth, J. A., Cronin, A. A., Dunlop, J., & Kalin, R. M. (2003). Influence of carbonates on the riverine carbon cycle in an anthropogenically dominated catchment basin: Evidence from major elements and stable carbon isotopes in the Lagan River (N. Ireland). Chemical Geology, 200(3–4), 203–216.
Barzegar, R., Asghari Moghaddam, A., & Tziritis, E. (2016). Assessing the hydrogeochemistry and water quality of the Aji-Chay River, northwest of Iran. Environmental earth sciences, 75, 1–15.Berner, R. A., Lasaga, A. C., & Garrels, R. M. (1983). Carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. Am. J. Sci.;(United States), 283(7).
BIS. (2012). Indian Standard Drinking Water – Specification (Second Revision) (IS:10500:2012). Bureau of Indian Standards, New Delhi.
Bisht, H., Kotlia, B., Kumar, K., Arya, P., Sah, S., Tiwari, M., & Upadhyay, R. (2020). Hydrogeochemical analysis and identification of weathering processes to determine the solute sources in meltwater of Chaturangi glacier, Garhwal Himalaya. Authorea Preprints.
doi: 10.22541/au.159985986.62990515
Blanca, M. J., Arnau, J., López-Montiel, D., Bono, R., & Bendayan, R. (2013). Skewness and kurtosis in real data samples. Methodology.
Brown, G. H. (2002). Glacier meltwater hydrochemistry. Applied Geochemistry, 17(7), 855–883.
doi: 10.1016/S0883-2927(01)00123-8
Brown, G. H., Sharp, M., & Tranter, M. (1996). Subglacial chemical erosion: Seasonal variations in solute provenance, Haut Glacier d’Arolla, Valais, Switzerland. Annals of Glaciology, 22, 25–31.
doi: 10.3189/1996AoG22-1-25-31
Bücker, A., Crespo, P., Frede, H. G., Vaché, K., Cisneros, F., & Breuer, L. (2010). Identifying controls on water chemistry of tropical cloud forest catchments: Combining descriptive approaches and multivariate analysis. Aquatic Geochemistry, 16, 127–149.
doi: 10.1007/s10498-009-9073-4
Cain, M. K., Zhang, Z., & Yuan, K. H. (2017). Univariate and multivariate skewness and kurtosis for measuring nonnormality: Prevalence, influence and estimation. Behavior Research Methods, 49, 1716–1735.
doi: 10.3758/s13428-016-0814-1
Cartwright, I. (2010). The origins and behaviour of carbon in a major semi-arid river, the Murray River, Australia, as constrained by carbon isotopes and hydrochemistry. Applied Geochemistry, 25(11), 1734–1745.
doi: 10.1016/j.apgeochem.2010.08.020
Central Pollution Control Board (CPCB). (2000). Primary water quality criteria for bathing water (Water used for organised outdoor bathing). Ministry of Environment, Forest and Climate Change, Government of India.
Chakrapani, G. J., & Veizer, J. (2006). Source of dissolved sulphate in the Alakananda-Bhagirathi rivers in the Himalayas. Current Science, 90(4), 500–503.
Chakrapani, G. J., Saini, R. K., & Yadav, S. K. (2009). Chemical weathering rates in the Alaknanda-Bhagirathi river basins in Himalayas India. Journal of Asian Earth Sciences, 34(3), 347–362.
doi: 10.1016/j.jseaes.2008.06.002
Chen, S., Hu, C., Barnes, B. B., Wanninkhof, R., Cai, W. J., Barbero, L., & Pierrot, D. (2019). A machine learning approach to estimate surface ocean pCO2 from satellite measurements. Remote Sensing of Environment, 228, 203–226.
doi: 10.1016/j.rse.2019.04.019
Chetelat, B., Liu, C. Q., Zhao, Z. Q., Wang, Q. L., Li, S. L., Li, J., & Wang, B. L. (2008). Geochemistry of the dissolved load of the Changjiang Basin rivers: Anthropogenic impacts and chemical weathering. Geochimica Et Cosmochimica Acta, 72(17), 4254–4277.
doi: 10.1016/j.gca.2008.06.013
Cole, J. J., & Caraco, N. F. (2001). Carbon in catchments: Connecting terrestrial carbon losses with aquatic metabolism. Marine and Freshwater Research, 52(1), 101–110.
doi: 10.1071/MF00084
Crosa, G., Froebrich, J., Nikolayenko, V., Stefani, F., Galli, P., & Calamari, D. (2006). Spatial and seasonal variations in the water quality of the Amu Darya River (Central Asia). Water Research, 40(11), 2237–2245.
doi: 10.1016/j.watres.2006.04.004
Dinsmore, K. J., Wallin, M. B., Johnson, M. S., Billett, M. F., Bishop, K., Pumpanen, J., & Ojala, A. (2013). Contrasting CO2 concentration discharge dynamics in headwater streams: A multi-catchment comparison. Journal of Geophysical Research: Biogeosciences, 118(2), 445–461.
doi: 10.1002/jgrg.20047
Drever, J. I. (1997). The geochemistry of natural waters (3rd ed.). Prentice Hall.
Elderfield, H. (2010). Seawater chemistry and climate. Science, 327(5969), 1092–1093.
doi: 10.1126/science.1186769
Fellman, J. B., D’Amore, D. V., & Hood, E. (2008). An evaluation of freezing as a preservation technique for analyzing dissolved organic C, N and P in surface water samples. Science of the Total Environment, 392(2–3), 305–312.
doi: 10.1016/j.scitotenv.2007.11.027
Fentahun, A., Mechal, A., & Karuppannan, S. (2023). Hydrochemistry and quality appraisal of groundwater in Birr River Catchment, Central Blue Nile River Basin, using multivariate techniques and water quality indices. Environmental Monitoring and Assessment, 195(6), 655.
doi: 10.1007/s10661-023-11198-6
Ford, D. C., & Williams, P. W. (1989). Karst geomorphology and hydrology (Vol. 601). Unwin Hyman.
doi: 10.1007/978-94-011-7778-8
Fröhlich, H. L., Breuer, L., Frede, H. G., Huisman, J. A., & Vaché, K. B. (2008). Water source characterization through spatiotemporal patterns of major, minor and trace element stream concentrations in a complex, mesoscale German catchment. Hydrological Processes: An International Journal, 22(12), 2028–2043.
doi: 10.1002/hyp.6804
Ganvir, P. S., & Armori, M. I. (2023). Hydro-geochemical plots: An efficient tool for the elucidation of groundwater chemistry. International Journal of Innovative Science and Research Technology, 8(2), 95–100.
Garizi, A. Z., Sheikh, V., & Sadoddin, A. (2011). Assessment of seasonal variations of chemical characteristics in surface water using multivariate statistical methods. International Journal of Environmental Science & Technology, 8, 581–592.
doi: 10.1007/BF03326244
Gibbs, R. J. (1970). Mechanisms controlling world water chemistry. Science, 170(3962), 1088–1090.
doi: 10.1126/science.170.3962.1088
Gislason, S. R., Oelkers, E. H., Eiriksdottir, E. S., Kardjilov, M. I., Gisladottir, G., Sigfusson, B., ... & Oskarsson, N. (2009). Direct evidence of the feedback between climate and weathering. Earth and Planetary Science Letters, 277(1–2), 213–222.
Graly, J. A., Drever, J. I., & Humphrey, N. F. (2017). Calculating the balance between atmospheric CO2 drawdown and organic carbon oxidation in subglacial hydrochemical systems. Global Biogeochemical Cycles, 31(4), 709–727.
doi: 10.1002/2016GB005425
Gruber, N., Friedlingstein, P., Field, C. B., Valentini, R., Heimann, M., Richey, J. E., ... & Chen, C. T. A. (2004). The vulnerability of the carbon cycle in the 21st century: An assessment of carbon-climate-human interactions. Scope-Scientific committee on problems of the environment international council of scientific unions, 62, 45–76.
Haque, M. M., Begum, M. S., Nayna, O. K., Tareq, S. M., & Park, J. H. (2022). Seasonal shifts in diurnal variations of pCO2 and O2 in the lower Ganges River. Limnology and Oceanography Letters, 7(3), 191–201.
doi: 10.1002/lol2.10246
Hargreaves, J. A., & Brunson, M. (1996). Carbon dioxide in fish ponds (pp. 1–6). Starkville, Mississippi: Southern Regional Aquaculture Center.
Harmon, R. S., Lyons, W. B., Long, D. T., Ogden, F. L., Mitasova, H., Gardner, C. B., ... & Witherow, R. A. (2009). Geochemistry of four tropical montane watersheds, Central Panama. Applied Geochemistry, 24(4), 624–640.
Hartmann, J., Jansen, N., Dürr, H. H., Kempe, S., & Köhler, P. (2009). Global CO2-consumption by chemical weathering: What is the contribution of highly active weathering regions? Global and Planetary Change, 69(4), 185–194.
doi: 10.1016/j.gloplacha.2009.07.007
Herath, I. K., Wu, S., Ma, M., & Ping, H. (2022). Dynamic of riverine pCO2, biogeochemical characteristics, and carbon sources inferred from δ13C in a subtropical river system. Science of the Total Environment, 821, 153296.
doi: 10.1016/j.scitotenv.2022.153296
Hodson, A., Porter, P., Lowe, A., & Mumford, P. (2002). Chemical denudation and silicate weathering in Himalayan glacier basins: Batura Glacier. Pakistan. Journal of Hydrology, 262(1–4), 193–208.
doi: 10.1016/S0022-1694(02)00036-7
Hu, B., Wang, D., Zhou, J., Meng, W., Li, C., Sun, Z., ... & Wang, Z. (2018). Greenhouse gases emission from the sewage draining rivers. Science of the Total Environment, 612, 1454–1462.
Hunt, C. W., Salisbury, J. E., & Vandemark, D. (2011). Contribution of non-carbonate anions to total alkalinity and overestimation of pCO2 in New England and New Brunswick rivers. Biogeosciences, 8(10), 3069–3076.
doi: 10.5194/bg-8-3069-2011
Jahan, A., Khan, M. U., Rai, N., Kumar, S., & Dar, T. A. (2023). Geochemical characterization, its controlling factors, and comparison between the upstream and downstream segments of the Himalayan Satluj River basin. India. Geochemistry, 83(2), 125974.
doi: 10.1016/j.chemer.2023.125974
Kaiser, H. F. (1958). The varimax criterion for analytic rotation in factor analysis. Psychometrika, 23(3), 187–200.
doi: 10.1007/BF02289233
Kandel, K., Sharma, C. M., Rawat, B., Paudyal, R., Li, M., Pandey, A., & Zhang, Q. (2024). Synthesis analysis of hydrogeochemistry of nepal himalayan rivers: Perspective from major ions and trace elements. Ecological Indicators, 163, 112080.
doi: 10.1016/j.ecolind.2024.112080
Khan, M. Y. A., Panwar, S., & Wen, J. (2022). Geochemistry of the dissolved load of the Ramganga River, Ganga Basin, India: Anthropogenic impacts and chemical weathering. Frontiers in Environmental Science, 10, 823385.
doi: 10.3389/fenvs.2022.823385
Kulkarni, A. V., & Karyakarte, Y. (2014). Observed changes in Himalayan glaciers. Current Science, 237–244.
Kumar, R., Kumari, R., Prasad, C., Tiwari, V., Singh, N., Mohapatra, S., ... & Deep, A. (2020). Phytoplankton diversity in relation to physicochemical attributes and water quality of Mandakini River, Garhwal Himalaya. Environmental Monitoring and Assessment, 192, 1–23.
Le, C., Gao, Y., Cai, W. J., Lehrter, J. C., Bai, Y., & Jiang, Z. P. (2019). Estimating summer sea surface pCO2 on a river-dominated continental shelf using a satellite-based semi-mechanistic model. Remote Sensing of Environment, 225, 115–126.
doi: 10.1016/j.rse.2019.02.023
Less, D. F., Cunha, A. C., Sawakuchi, H. O., Neu, V., Valério, A. M., Ward, N. D., ... & Richey, J. E. (2018). The role of hydrodynamic and biogeochemistry on CO2 flux and pCO2 at the Amazon River mouth. Biogeosciences Discussions, 1–26.
Li, S., Lu, X. X., He, M., Zhou, Y., Li, L., & Ziegler, A. D. (2012). Daily CO2 partial pressure and CO2 outgassing in the upper Yangtze River basin: A case study of the Longchuan River, China. Journal of Hydrology, 466, 141–150.
doi: 10.1016/j.jhydrol.2012.08.011
Li, S., Lu, X. X., & Bush, R. T. (2013). CO2 partial pressure and CO2 emission in the Lower Mekong River. Journal of Hydrology, 504, 40–56.
doi: 10.1016/j.jhydrol.2013.09.024
Li, Y., Bian, J., Li, J., Ma, Y., & Anguiano, J. H. H. (2022). Hydrochemistry and stable isotope indication of natural mineral water in Changbai Mountain. China. Journal of Hydrology: Regional Studies, 40, 101047.
Liu, J., & Han, G. (2021). Controlling factors of riverine CO2 partial pressure and CO2 outgassing in a large karst river under base flow condition. Journal of Hydrology, 593, 125638.
doi: 10.1016/j.jhydrol.2020.125638
Liu, S., & Raymond, P. A. (2018). Hydrologic controls on pCO2 and CO2 efflux in US streams and rivers. Limnology and Oceanography Letters, 3(6), 428–435.
doi: 10.1002/lol2.10095
Liu, Z., Dreybrodt, W., & Liu, H. (2011). Atmospheric CO2 sink: Silicate weathering or carbonate weathering? Applied Geochemistry, 26, S292–S294.
doi: 10.1016/j.apgeochem.2011.03.085
Liu, S., Lu, X. X., Xia, X., Zhang, S., Ran, L., Yang, X., & Liu, T. (2016). Dynamic biogeochemical controls on river pCO2 and recent changes under aggravating river impoundment: An example of the subtropical Yangtze River. Global Biogeochemical Cycles, 30(6), 880–897.
doi: 10.1002/2016GB005388
Liu, J., Wang, M., Gao, Z., Chen, Q., Wu, G., & Li, F. (2020a). Hydrochemical characteristics and water quality assessment of groundwater in the Yishu River basin. Acta Geophysica, 68, 877–889.
doi: 10.1007/s11600-020-00440-1
Liu, S., Butman, D. E., & Raymond, P. A. (2020b). Evaluating CO2 calculation error from organic alkalinity and pH measurement error in low ionic strength freshwaters. Limnology and Oceanography: Methods, 18(10), 606–622.
Liu, B., Liu, C. Q., Zhang, G., Zhao, Z. Q., Li, S. L., Hu, J., ... & Li, X. D. (2013). Chemical weathering under mid-to cool temperate and monsoon-controlled climate: A study on water geochemistry of the Songhuajiang River system, northeast China. Applied Geochemistry, 31, 265–278.
Liu, J., Gao, Z., Wang, M., Li, Y., Yu, C., Shi, M., ... & Ma, Y. (2019). Hydrochemical and isotopic characteristics of surface water in the Lhasa River basin. Arabian Journal of Geosciences, 12, 1–14.
Luo, J., Li, S., Ni, M., & Zhang, J. (2019). Large spatiotemporal shifts of CO2 partial pressure and CO2 degassing in a monsoonal headwater stream. Journal of Hydrology, 579, 124135.
doi: 10.1016/j.jhydrol.2019.124135
Marx, A., Dusek, J., Jankovec, J., Sanda, M., Vogel, T., van Geldern, R., ... & Barth, J. A. C. (2017). A review of CO2 and associated carbon dynamics in headwater streams: A global perspective. Reviews of Geophysics, 55(2), 560–585.
Meybeck, M. (2003). Global occurrence of major elements in rivers. Treatise on Geochemistry, 5, 605.
Millero, F. J. (2007). The marine inorganic carbon cycle. Chemical Reviews, 107(2), 308–341.
doi: 10.1021/cr0503557
Millot, R., Gaillardet, J., Dupré, B., & Allègre, C. J. (2002). The global control of silicate weathering rates and the coupling with physical erosion: New insights from rivers of the Canadian Shield. Earth and Planetary Science Letters, 196(1–2), 83–98.
doi: 10.1016/S0012-821X(01)00599-4
Moon, S., Huh, Y., Qin, J., & van Pho, N. (2007). Chemical weathering in the Hong (Red) River basin: Rates of silicate weathering and their controlling factors. Geochimica Et Cosmochimica Acta, 71(6), 1411–1430.
doi: 10.1016/j.gca.2006.12.004
Nayna, O. K., Begum, M. S., Ran, L., & Park, J. H. (2021). Improving carbonate equilibria-based estimation of p CO2 in anthropogenically impacted river systems. Frontiers in Earth Science, 9, 778215.
doi: 10.3389/feart.2021.778215
Pandey, V. K., & Mishra, A. (2015). Causes and disaster risk reduction measures for hydrometerological disaster in Uttarakhand, India: An overview. International Journal of Current Research in Science and Technology, 1(3), 61–80.
Pandey, C. P., Ahuja, V., Joshi, L. K., & Nandan, H. (2023). Extreme value analysis of precipitation and temperature over western Indian Himalayan State. Uttarakhand. Journal of Earth System Science, 132(2), 48.
doi: 10.1007/s12040-023-02057-6
Pant, N., Dubey, R. K., Bhatt, A., Rai, S. P., Semwal, P., & Mishra, S. (2020). Soil erosion and flood hazard zonation using morphometric and morphotectonic parameters in Upper Alaknanda river basin. Natural Hazards, 103, 3263–3301.
doi: 10.1007/s11069-020-04129-y
Panwar, S., & Chakrapani, G. J. (2016). Seasonal variability of grain size, weathering intensity, and provenance of channel sediments in the Alaknanda River Basin, an upstream of river Ganga, India. Environmental Earth Sciences, 75, 1–13.
doi: 10.1007/s12665-016-5815-y
Panwar, S., Khan, M. Y. A., & Chakrapani, G. J. (2016). Grain size characteristics and provenance determination of sediment and dissolved load of Alaknanda River, Garhwal Himalaya, India. Environmental Earth Sciences, 75, 1–15.
doi: 10.1007/s12665-015-4785-9
Panwar, S., Yang, S., Srivastava, P., Khan, M. Y. A., Sangode, S. J., & Chakrapani, G. J. (2020). Environmental magnetic characterization of the Alaknanda and Ramganga river sediments, Ganga basin. India. Catena, 190, 104529.
doi: 10.1016/j.catena.2020.104529
Patra, G., Mukherjee, S., & Jha, V. C. (2022). Geospatial techniques based analysis of forest cover reclamation in Karnaprayag, CD Block, Uttarakhand--India. Annals of the National Association of Geographers, India, 42(2).
Pierrot, D. E., Wallace, D. W. R., & Lewis, E. (2011). MS Excel program developed for CO2 system calculations. Carbon dioxide information analysis center.
Piper, A. M. (1944). A graphic procedure in the geochemical interpretation of water-analyses. Eos, Transactions American Geophysical Union, 25(6), 914–928.
doi: 10.1029/TR025i006p00914
Pratap, D. Geographical profile of Uttarakhand. Uttarakhand: Need for a comprehensive eco-strategy, 1.
Qadir, M., Tubeileh, A., Akhtar, J., Larbi, A., Minhas, P. S., & Khan, M. A. (2008). Productivity enhancement of salt-affected environments through crop diversification. Land Degradation & Development, 19(4), 429–453.
doi: 10.1002/ldr.853
Qu, B., Zhang, Y., Kang, S., & Sillanpää, M. (2017). Water chemistry of the southern Tibetan Plateau: An assessment of the Yarlung Tsangpo river basin. Environmental Earth Sciences, 76, 1–12.
doi: 10.1007/s12665-017-6393-3
Raiswell, R. (1984). Chemical models of solute acquisition in glacial melt waters. Journal of Glaciology, 30(104), 49–57.
doi: 10.3189/S0022143000008480
Raiswell, R., & Thomas, A. G. (1984). Solute acquisition in glacial melt waters. I. Fjallsjökull (south-east Iceland): Bulk melt waters with closed-system characteristics. Journal of Glaciology, 30(104), 35–43.
Ran, L., Lu, X. X., Richey, J. E., Sun, H., Han, J., Yu, R., ... & Yi, Q. (2015). Long-term spatial and temporal variation of CO2 partial pressure in the Yellow River, China. Biogeosciences, 12(4), 921–932.
Reynolds, R. C., Jr., & Johnson, N. M. (1972). Chemical weathering in the temperate glacial environment of the Northern Cascade Mountains. Geochimica Et Cosmochimica Acta, 36(5), 537–554.
doi: 10.1016/0016-7037(72)90074-9
Sarin, M. M., Krishnaswami, S., Dilli, K., Somayajulu, B. L. K., & Moore, W. S. (1989). Major ion chemistry of the Ganga-Brahmaputra river system: Weathering processes and fluxes to the Bay of Bengal. Geochimica Et Cosmochimica Acta, 53(5), 997–1009.
doi: 10.1016/0016-7037(89)90205-6
Sharma, M. K., Thayyen, R. J., Jain, C. K., Arora, M., & Lal, S. (2019). Assessment of system characteristics of Gangotri glacier headwater stream. Science of the Total Environment, 662, 842–851.
doi: 10.1016/j.scitotenv.2019.01.229
Sharma, M. K., Kumar, P., Prajapati, P., Bhanot, K., Wadhwa, U., Tomar, G., ... & Sharma, B. (2022). Study of hydrochemical and geochemical characteristics and solute fluxes in Upper Ganga Basin, India. Journal of Asian Earth Sciences: X, 8, 100108.
Sharp, M., Tranter, M., Brown, G. H., & Skidmore, M. (1995). Rates of chemical denudation and CO2 drawdown in a glacier-covered alpine catchment. Geology, 23(1), 61–64.
doi: 10.1130/0091-7613(1995)023<0061:ROCDAC>2.3.CO;2
Shukla, D. P., Dubey, C. S., Ningreichon, A. S., Singh, R. P., Mishra, B. K., & Singh, S. K. (2014). GIS-based morpho-tectonic studies of Alaknanda river basin: A precursor for hazard zonation. Natural Hazards, 71, 1433–1452.
doi: 10.1007/s11069-013-0953-y
Singh, A. K., & Hasnain, S. I. (1998). Major ion chemistry and weathering control in a high altitude basin: Alaknanda River, Garhwal Himalaya India. Hydrological Sciences Journal, 43(6), 825–843.
doi: 10.1080/02626669809492181
Singh, A. K., & Hasnain, S. I. (2002). Aspects of weathering and solute acquisition processes controlling chemistry of sub-Alpine proglacial streams of Garhwal Himalaya India. Hydrological Processes, 16(4), 835–849.
doi: 10.1002/hyp.367
Singh, V. B., & Kumar, P. (2022). Hydrogeochemical characteristics of meltwater draining from Himalayan glaciers: A critical review. Arabian Journal of Geosciences, 15(8), 680.
doi: 10.1007/s12517-022-09903-9
Sridevi, B., & Sarma, V. V. S. S. (2021). Role of river discharge and warming on ocean acidification and pCO2 levels in the Bay of Bengal. Tellus b: Chemical and Physical Meteorology, 73(1), 1–20.
doi: 10.1080/16000889.2021.1971924
Srivastava, P., Tripathi, J. K., Islam, R., & Jaiswal, M. K. (2008). Fashion and phases of late Pleistocene aggradation and incision in the Alaknanda River Valley, western Himalaya. India. Quaternary Research, 70(1), 68–80.
Sundriyal, Y. P., Shukla, A. D., Rana, N., Jayangondaperumal, R., Srivastava, P., Chamyal, L. S., ... & Juyal, N. (2015). Terrain response to the extreme rainfall event of June 2013: Evidence from the Alaknanda and Mandakini River Valleys, Garhwal Himalaya, India. Episodes Journal of International Geoscience, 38(3), 179–188.
Thayyen, R. J., & Gergan, J. T. (2010). Role of glaciers in watershed hydrology: A preliminary study of a “Himalayan catchment.” The Cryosphere, 4(1), 115–128.
doi: 10.5194/tc-4-115-2010
Theakstone, W. H. (2003). Oxygen isotopes in glacier-river water, Austre Okstindbreen, Okstindan. Norway. Journal of Glaciology, 49(165), 282–298.
doi: 10.3189/172756503781830700
Thomas, A. G., & Raiswell, R. (1984). Solute acquisition in glacial melt waters. II Argentière (French Alps): Bulk melt waters with open-system characteristics. Journal of Glaciology, 30(104), 44–48.
Thorley, R. M., Taylor, L. L., Banwart, S. A., Leake, J. R., & Beerling, D. J. (2015). The role of forest trees and their mycorrhizal fungi in carbonate rock weathering and its significance for global carbon cycling. Plant, Cell & Environment, 38(9), 1947–1961.
doi: 10.1111/pce.12444
Tiwari, A. K., Singh, A. K., Phartiyal, B., & Sharma, A. (2021). Hydrogeochemical characteristics of the Indus river water system. Chemistry and Ecology, 37(9–10), 780–808.
doi: 10.1080/02757540.2021.1999425
Torres, M. A., West, A. J., Clark, K. E., Paris, G., Bouchez, J., Ponton, C., ... & Adkins, J. F. (2016). The acid and alkalinity budgets of weathering in the Andes–Amazon system: Insights into the erosional control of global biogeochemical cycles. Earth and Planetary Science Letters, 450, 381–391.
Tranter, M., Brown, G., Raiswell, R., Sharp, M., & Gurnell, A. (1993). A conceptual model of solute acquisition by Alpine glacial meltwaters. Journal of Glaciology, 39(133), 573–581.
doi: 10.3189/S0022143000016464
Ulloa-Cedamanos, F., Probst, J. L., Binet, S., Camboulive, T., Payre-Suc, V., Pautot, C., ... & Probst, A. (2020). A forty-year karstic critical zone survey (Baget Catchment, Pyrenees-France): Lithologic and hydroclimatic controls on seasonal and inter-annual variations of stream water chemical composition, pCO2, and carbonate equilibrium. Water, 12(5), 1227.
Upadhyay, P., Prajapati, S. K., & Kumar, A. (2024). Deciphering carbon dioxide fluxes and interactions in the Ganga river Basin of South Asia. Environmental Research, 252, 118902.
doi: 10.1016/j.envres.2024.118902
Wadham, J. L., Hodson, A. J., Tranter, M., & Dowdeswell, J. A. (1998). The hydrochemistry of meltwaters draining a polythermal-based, high Arctic glacier, south Svalbard: I. The Ablation Season. Hydrological Processes, 12(12), 1825–1849.
doi: 10.1002/(SICI)1099-1085(19981015)12:12<1825::AID-HYP669>3.0.CO;2-R
Wang, X., He, Y., Yuan, X., Chen, H., Peng, C., Zhu, Q., ... & Liu, H. (2017). pCO2 and CO2 fluxes of the metropolitan river network in relation to the urbanization of Chongqing, China. Journal of Geophysical Research: Biogeosciences, 122(3), 470–486.
Wang, J., Wang, X., Liu, T., Yuan, X., Chen, H., He, Y., ... & Zhang, Y. (2021). pCO2 and CO2 evasion from two small suburban rivers: Implications of the watershed urbanization process. Science of The Total Environment, 788, 147787.
White, A. F., & Blum, A. E. (1995). Effects of climate on chemical weathering in watersheds. Geochimica Et Cosmochimica Acta, 59(9), 1729–1747.
doi: 10.1016/0016-7037(95)00078-E
Wu, H., Wu, J., Li, J., & Fu, C. (2020). Spatial variations of hydrochemistry and stable isotopes in mountainous river water from the Central Asian headwaters of the Tajikistan Pamirs. CATENA, 193, 104639.
doi: 10.1016/j.catena.2020.104639
Yao, G., Gao, Q., Wang, Z., Huang, X., He, T., Zhang, Y., ... & Ding, J. (2007). Dynamics of CO2 partial pressure and CO2 outgassing in the lower reaches of the Xijiang River, a subtropical monsoon river in China. Science of the Total Environment, 376(1–3), 255–266.
Zeebe, R. E., & Wolf-Gladrow, D. (2001). CO2 in seawater: Equilibrium, kinetics, isotopes (Vol. 65). Gulf Professional Publishing.
Zeinalzadeh, K., & Rezaei, E. (2017). Determining spatial and temporal changes of surface water quality using principal component analysis. Journal of Hydrology: Regional Studies, 13, 1–10.
Zhai, W., & Dai, M. (2009). On the seasonal variation of air–sea CO2 fluxes in the outer Changjiang (Yangtze River) Estuary. East China Sea. Marine Chemistry, 117(1–4), 2–10.

Auteurs

Kunarika Bhanot (K)

Gurukula Kangri (Deemed to Be University), Haridwar, 249404, Uttarakhand, India.

M K Sharma (MK)

National Institute of Hydrology, Roorkee, 247667, Uttarakhand, India. sharmamk.1967@gmail.com.

R D Kaushik (RD)

Gurukula Kangri (Deemed to Be University), Haridwar, 249404, Uttarakhand, India.

Articles similaires

Photosynthesis Ribulose-Bisphosphate Carboxylase Carbon Dioxide Molecular Dynamics Simulation Cyanobacteria
Semiconductors Photosynthesis Polymers Carbon Dioxide Bacteria
Animals Lung India Sheep Transcriptome
India Carbon Sequestration Environmental Monitoring Carbon Biomass

Classifications MeSH