Neurovascular coupling and oxygenation are decreased in hippocampus compared to neocortex because of microvascular differences.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
27 05 2021
Historique:
received: 30 10 2019
accepted: 26 04 2021
entrez: 28 5 2021
pubmed: 29 5 2021
medline: 10 6 2021
Statut: epublish

Résumé

The hippocampus is essential for spatial and episodic memory but is damaged early in Alzheimer's disease and is very sensitive to hypoxia. Understanding how it regulates its oxygen supply is therefore key for designing interventions to preserve its function. However, studies of neurovascular function in the hippocampus in vivo have been limited by its relative inaccessibility. Here we compared hippocampal and visual cortical neurovascular function in awake mice, using two photon imaging of individual neurons and vessels and measures of regional blood flow and haemoglobin oxygenation. We show that blood flow, blood oxygenation and neurovascular coupling were decreased in the hippocampus compared to neocortex, because of differences in both the vascular network and pericyte and endothelial cell function. Modelling oxygen diffusion indicates that these features of the hippocampal vasculature may restrict oxygen availability and could explain its sensitivity to damage during neurological conditions, including Alzheimer's disease, where the brain's energy supply is decreased.

Identifiants

pubmed: 34045465
doi: 10.1038/s41467-021-23508-y
pii: 10.1038/s41467-021-23508-y
pmc: PMC8160329
doi:

Substances chimiques

Adenosine Triphosphate 8L70Q75FXE
Oxygen S88TT14065

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

3190

Subventions

Organisme : Wellcome Trust
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_PC_15071
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/S026495/1
Pays : United Kingdom

Commentaires et corrections

Type : ErratumIn

Références

Coughlan, G., Laczó, J., Hort, J., Minihane, A. M. & Hornberger, M. Spatial navigation deficits — overlooked cognitive marker for preclinical Alzheimer disease? Nat. Rev. Neurol. 14, 1–11 (2018).
doi: 10.1038/s41582-018-0031-x
Kisler, K., Nelson, A. R., Montagne, A. & Zlokovic, B. V. Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease. Nat. Rev. Neurosci. 18, 419–434 (2017).
pubmed: 28515434 pmcid: 5759779 doi: 10.1038/nrn.2017.48
Kanoski, S. E. & Davidson, T. L. Western diet consumption and cognitive impairment: links to hippocampal dysfunction and obesity. Physiol. Behav. 103, 59–68 (2011).
pubmed: 21167850 doi: 10.1016/j.physbeh.2010.12.003
Montagne, A. et al. Blood-brain barrier breakdown in the aging human hippocampus. Neuron 85, 296–302 (2015).
pubmed: 25611508 pmcid: 4350773 doi: 10.1016/j.neuron.2014.12.032
Montagne, A. et al. Brain imaging of neurovascular dysfunction in Alzheimer’s disease. Acta Neuropathol. 131, 687–707 (2016).
pubmed: 27038189 pmcid: 5283382 doi: 10.1007/s00401-016-1570-0
Wang, H., Golob, E. J. & Su, M. Y. Vascular volume and blood-brain barrier permeability measured by dynamic contrast enhanced MRI in hippocampus and cerebellum of patients with MCI and normal controls. J. Magn. Reson. Imaging 24, 695–700 (2006).
pubmed: 16878309 doi: 10.1002/jmri.20669
Perosa, V. et al. Hippocampal vascular reserve associated with cognitive performance and hippocampal volume. Brain 143, 622–634 (2020).
pubmed: 31994699 pmcid: 7009470 doi: 10.1093/brain/awz383
Michaelis, E. K. Selective Neuronal Vulnerability in the Hippocampus: Relationship to Neurological Diseases and Mechanisms for Differential Sensitivity of Neurons to Stress. in The Clinical Neurobiology of the Hippocampus, 54–76 (Oxford University Press, 2012).
Ekstrom, A., Suthana, N., Millett, D., Fried, I. & Bookheimer, S. Correlation between BOLD fMRI and theta-band local field potentials in the human hippocampal area. J. Neurophysiol. 101, 2668–2678 (2009).
pubmed: 19244353 pmcid: 2681439 doi: 10.1152/jn.91252.2008
Schridde, U. et al. Negative BOLD with large increases in neuronal activity. Cereb. Cortex 18, 1814–27 (2008).
pubmed: 18063563 doi: 10.1093/cercor/bhm208
Dombeck, D. A., Harvey, C. D., Tian, L., Looger, L. L. & Tank, D. W. Functional imaging of hippocampal place cells at cellular resolution during virtual navigation. Nat. Neurosci. 13, 1433–1440 (2010).
pubmed: 20890294 pmcid: 2967725 doi: 10.1038/nn.2648
Kisler, K. et al. Pericyte degeneration leads to neurovascular uncoupling and limits oxygen supply to brain. Nat. Neurosci. 20, 406–416 (2017).
pubmed: 28135240 pmcid: 5323291 doi: 10.1038/nn.4489
Dana, H. et al. Thy1-GCaMP6 transgenic mice for neuronal population imaging in vivo. PLoS ONE 9, e108697 (2014).
pubmed: 25250714 pmcid: 4177405 doi: 10.1371/journal.pone.0108697
Cavaglia, M. et al. Regional variation in brain capillary density and vascular response to ischemia. Brain Res. 910, 81–93 (2001).
pubmed: 11489257 doi: 10.1016/S0006-8993(01)02637-3
Zhang, X. et al. High-resolution mapping of brain vasculature and its impairment in the hippocampus of Alzheimer’s disease mice. Natl. Sci. Rev. 6, 1223–1238 (2019).
pubmed: 34692000 pmcid: 8291402 doi: 10.1093/nsr/nwz124
Buxton, R. B. & Frank, L. R. A model for the coupling between cerebral blood flow and oxygen metabolism during neural stimulation. J. Cereb. Blood Flow. Metab. 17, 64–72 (1997).
pubmed: 8978388 doi: 10.1097/00004647-199701000-00009
Zeisel, A. et al. Molecular architecture of the mouse nervous system. Cell 174, 999–1014.e22 (2018).
pubmed: 30096314 pmcid: 6086934 doi: 10.1016/j.cell.2018.06.021
Grant, R. I. et al. Organizational hierarchy and structural diversity of microvascular pericytes in adult mouse cortex. J. Cereb. Blood Flow. Metab. 39, 411–425 (2019).
pubmed: 28933255 doi: 10.1177/0271678X17732229
Attwell, D., Mishra, A., Hall, C. N., O’Farrell, F. M. & Dalkara, T. What is a pericyte? J. Cereb. Blood Flow. Metab. 36, 451–455 (2016).
pubmed: 26661200 doi: 10.1177/0271678X15610340
Tsai, P. S. et al. Correlations of neuronal and microvascular densities in murine cortex revealed by direct counting and colocalization of nuclei and vessels. J. Neurosci. 29, 14553–70 (2009).
pubmed: 19923289 pmcid: 4972024 doi: 10.1523/JNEUROSCI.3287-09.2009
Nortley, R. et al. Amyloid β oligomers constrict human capillaries in Alzheimer’s disease via signaling to pericytes. Science 365, eaav9518 (2019).
Garcia, V. et al. 20-HETE signals through G-protein-coupled receptor GPR75 (Gq) to affect vascular function and trigger hypertension. Circ. Res. 120, 1776–1788 (2017).
pubmed: 28325781 pmcid: 5446268 doi: 10.1161/CIRCRESAHA.116.310525
Park, S. K. et al. GPR40 is a low-affinity epoxyeicosatrienoic acid receptor in vascular cells. J. Biol. Chem. 293, 10675–10691 (2018).
pubmed: 29777058 pmcid: 6036206 doi: 10.1074/jbc.RA117.001297
Hogan-Cann, A. D., Lu, P. & Anderson, C. M. Endothelial NMDA receptors mediate activity-dependent brain hemodynamic responses in mice. Proc. Natl Acad. Sci. 116, 10229–10231 (2019).
pubmed: 31061120 pmcid: 6535036 doi: 10.1073/pnas.1902647116
Tselnicker, I., Tsemakhovich, V. A., Dessauer, C. W. & Dascal, N. Stargazin modulates neuronal voltage-dependent Ca2+ channel Cav2.2 by a Gβγ-dependent mechanism. J. Biol. Chem. 285, 20462–20471 (2010).
pubmed: 20435886 pmcid: 2898357 doi: 10.1074/jbc.M110.121277
Longden, T. A. et al. Capillary K(+)-sensing initiates retrograde hyperpolarization to increase local cerebral blood flow. Nat. Neurosci. 20, 717–726 (2017).
pubmed: 28319610 pmcid: 5404963 doi: 10.1038/nn.4533
Parpaleix, A., Goulam Houssen, Y. & Charpak, S. Imaging local neuronal activity by monitoring PO
pubmed: 23314058 doi: 10.1038/nm.3059
Sakadžić, S. et al. Two-photon microscopy measurement of cerebral metabolic rate of oxygen using periarteriolar oxygen concentration gradients. Neurophotonics 3, 045005 (2016).
pubmed: 27774493 pmcid: 5066455 doi: 10.1117/1.NPh.3.4.045005
Gould, I. G., Tsai, P., Kleinfeld, D. & Linninger, A. The capillary bed offers the largest hemodynamic resistance to the cortical blood supply. J. Cereb. Blood Flow. Metab. 37, 52–68 (2017).
pubmed: 27780904 doi: 10.1177/0271678X16671146
Shulman, R. G., Hyder, F. & Rothman, D. L. Insights from neuroenergetics into the interpretation of functional neuroimaging: an alternative empirical model for studying the brain’s support of behavior. J. Cereb. Blood Flow. Metab. 34, 1721–35 (2014).
pubmed: 25160670 pmcid: 4269754 doi: 10.1038/jcbfm.2014.145
Schmid, F., Tsai, P. S., Kleinfeld, D., Jenny, P. & Weber, B. Depth-dependent flow and pressure characteristics in cortical microvascular networks. PLoS Comput. Biol. 13, 1–22 (2017).
doi: 10.1371/journal.pcbi.1005392
Rungta, R. L., Chaigneau, E., Osmanski, B.-F. & Charpak, S. Vascular compartmentalization of functional hyperemia from the synapse to the Pia. Neuron 99, 362–375.e4 (2018).
pubmed: 29937277 pmcid: 6069674 doi: 10.1016/j.neuron.2018.06.012
Hall, C. N. et al. Capillary pericytes regulate cerebral blood flow in health and disease. Nature 508, 55–60 (2014).
pubmed: 24670647 pmcid: 3976267 doi: 10.1038/nature13165
Fernández-Klett, F., Offenhauser, N., Dirnagl, U., Priller, J. & Lindauer, U. Pericytes in capillaries are contractile in vivo, but arterioles mediate functional hyperemia in the mouse brain. Proc. Natl Acad. Sci. USA 107, 22290–5 (2010).
pubmed: 21135230 pmcid: 3009761 doi: 10.1073/pnas.1011321108
Hill, R. A. et al. Regional blood flow in the normal and ischemic brain is controlled by arteriolar smooth muscle cell contractility and not by capillary pericytes. Neuron 87, 95–110 (2015).
pubmed: 26119027 pmcid: 4487786 doi: 10.1016/j.neuron.2015.06.001
Alarcon-Martinez, L. et al. Capillary pericytes express α-smooth muscle actin, which requires prevention of filamentous-actin depolymerization for detection. Elife 7, 1–17 (2018).
doi: 10.7554/eLife.34861
Chen, B. R., Kozberg, M. G., Bouchard, M. B., Shaik, M. A. & Hillman, E. M. C. A critical role for the vascular endothelium in functional neurovascular coupling in the brain. J. Am. Heart Assoc. 3, e000787 (2014).
pubmed: 24926076 pmcid: 4309064 doi: 10.1161/JAHA.114.000787
Galeffi, F., Degan, S., Britz, G. & Turner, D. A. Dysregulation of oxygen hemodynamic responses to synaptic train stimulation in a rat hippocampal model of subarachnoid hemorrhage. J. Cereb. Blood Flow. Metab. 36, 696–701 (2015).
pubmed: 26721394 pmcid: 4821025 doi: 10.1177/0271678X15624699
Erecińska, M. & Silver, I. A. Tissue oxygen tension and brain sensitivity to hypoxia. Respir. Physiol. 128, 263–276 (2001).
pubmed: 11718758 doi: 10.1016/S0034-5687(01)00306-1
Mikat, M., Peters, J., Zindler, M. & Arndt, J. O. Whole body oxygen consumption in awake, sleeping, and anesthetized dogs. Anesthesiology 60, 220–7 (1984).
pubmed: 6696256 doi: 10.1097/00000542-198403000-00009
Lyons, D. G., Parpaleix, A., Roche, M. & Charpak, S. Mapping oxygen concentration in the awake mouse brain. Elife 5, 1–16 (2016).
doi: 10.7554/eLife.12024
Sakadžić, S. et al. Large arteriolar component of oxygen delivery implies a safe margin of oxygen supply to cerebral tissue. Nat. Commun. 5, 5734 (2014).
pubmed: 25483924 doi: 10.1038/ncomms6734
Le Feber, J., Pavlidou, S. T., Erkamp, N., Van Putten, M. J. A. M. & Hofmeijer, J. Progression of neuronal damage in an in vitro model of the ischemic penumbra. PLoS ONE 11, 1–19 (2016).
doi: 10.1371/journal.pone.0147231
Hofmeijer, J., Mulder, A. T. B., Farinha, A. C., Van Putten, M. J. A. M. & Le Feber, J. Mild hypoxia affects synaptic connectivity in cultured neuronal networks. Brain Res. 1557, 180–189 (2014).
pubmed: 24560899 doi: 10.1016/j.brainres.2014.02.027
de Jong, D. L. K. et al. Effects of nilvadipine on cerebral blood flow in patients With Alzheimer disease. Hypertension 74, 413–420 (2019).
pubmed: 31203725 doi: 10.1161/HYPERTENSIONAHA.119.12892
Lawlor, B. et al. Nilvadipine in mild to moderate Alzheimer disease: a randomised controlled trial. PLoS Med. 15, 1–20 (2018).
doi: 10.1371/journal.pmed.1002660
Berens, S. C., Horst, J. S. & Bird, C. M. Cross-situational learning is supported by propose-but-verify hypothesis testing. Curr. Biol. 28, 1132–1136.e5 (2018).
pubmed: 29551416 doi: 10.1016/j.cub.2018.02.042
Hall, C. N., Howarth, C., Kurth-Nelson, Z. & Mishra, A. Interpreting BOLD: towards a dialogue between cognitive and cellular neuroscience. Philos. Trans. R. Soc. B Biol. Sci. 371, 1–12 (2016).
doi: 10.1098/rstb.2015.0348
Zhu, X., Hill, R. A. & Nishiyama, A. NG2 cells generate oligodendrocytes and gray matter astrocytes in the spinal cord. Neuron Glia Biol. 4, 19–26 (2008).
pubmed: 19006598 doi: 10.1017/S1740925X09000015
Goldey, G. J. et al. Removable cranial windows for long-term imaging in awake mice. Nat. Protoc. 9, 2515–2538 (2014).
pubmed: 25275789 pmcid: 4442707 doi: 10.1038/nprot.2014.165
Aronov, D. & Tank, D. W. Engagement of neural circuits underlying 2D spatial navigation in a rodent virtual reality system. Neuron 84, 442–456 (2014).
pubmed: 25374363 pmcid: 4454359 doi: 10.1016/j.neuron.2014.08.042
Royl, G. et al. Hypothermia effects on neurovascular coupling and cerebral metabolic rate of oxygen. Neuroimage 40, 1523–1532 (2008).
pubmed: 18343160 doi: 10.1016/j.neuroimage.2008.01.041
Fagrell, B. & Nilsson, G. Advantages and limitations of one-point laser Doppler perfusion monitoring in clinical practice. Vasc. Med. Rev. 6, 97–101 (1995).
doi: 10.1177/1358863X9500600202
Fabricius, M., Akgören, N., Dirnagl, U. & Lauritzen, M. Laminar analysis of cerebral blood flow in cortex of rats by laser-Doppler flowmetry: a pilot study. J. Cereb. Blood Flow. Metab. 17, 1326–36 (1997).
pubmed: 9397032 doi: 10.1097/00004647-199712000-00008
Dombeck, D. A., Harvey, C. D., Tian, L., Looger, L. L. & Tank, D. W. Functional imaging of hippocampal place cells at cellular resolution during virtual navigation. Nat. Neurosci. 13, 1433–1440 (2010).
pubmed: 20890294 pmcid: 2967725 doi: 10.1038/nn.2648
Sun, W., Tan, Z., Mensh, B. D. & Ji, N. Thalamus provides layer 4 of primary visual cortex with orientation- and direction-tuned inputs. Nat. Neurosci. 19, 308–315 (2016).
pubmed: 26691829 doi: 10.1038/nn.4196
Mukamel, E. A., Nimmerjahn, A. & Schnitzer, M. J. Automated analysis of cellular signals from large-scale calcium imaging data. Neuron 63, 747–60 (2009).
pubmed: 19778505 pmcid: 3282191 doi: 10.1016/j.neuron.2009.08.009
Drew, P. J., Blinder, P., Cauwenberghs, G., Shih, A. Y. & Kleinfeld, D. Rapid determination of particle velocity from space-time images using the Radon transform. J. Comput. Neurosci. 29, 5–11 (2010).
pubmed: 19459038 doi: 10.1007/s10827-009-0159-1
Dix, S. L. & Aggleton, J. P. Extending the spontaneous preference test of recognition: evidence of object-location and object-context recognition. Behav. Brain Res. 99, 191–200 (1999).
pubmed: 10512585 doi: 10.1016/S0166-4328(98)00079-5
Preibisch, S., Saalfeld, S. & Tomancak, P. Globally optimal stitching of tiled 3D microscopic image acquisitions. Bioinformatics 25, 1463–1465 (2009).
pubmed: 19346324 pmcid: 2682522 doi: 10.1093/bioinformatics/btp184
Uchida, K., Reilly, M. P. & Asakura, T. Molecular stability and function of mouse hemoglobins. Zool. Sci. 15, 703–706 (2006).
doi: 10.2108/zsj.15.703
Sander, R. Compilation of Henry’s law constants (version 4.0) for water as solvent. Atmos. Chem. Phys. 15, 4399–4981 (2015).
doi: 10.5194/acp-15-4399-2015
Ganfield, R. A., Nair, P. & Whalen, W. J. Mass transfer, storage, and utilization of O2 in cat cerebral cortex. Am. J. Physiol. 219, 814–821 (1970).
pubmed: 5450892 doi: 10.1152/ajplegacy.1970.219.3.814
Cooper, C. E. Competitive, reversible, physiological? Inhibition of mitochondrial cytochrome oxidase by nitric oxide. IUBMB Life 55, 591–597 (2003).
pubmed: 14711004 doi: 10.1080/15216540310001628663
Colom, A., Galgoczy, R., Almendros, I., Xaubet, A. & Farr, R. Oxygen diffusion and consumption in extracellular matrix gels: Implications for designing three-dimensional cultures. J. Biomed. Mater. Res. A 102, 2776–2784 (2014).
Thomsen, M. S., Routhe, L. J. & Moos, T. The vascular basement membrane in the healthy and pathological brain. J. Cereb. Blood Flow Metab. 37, 3300–3317 (2017).
Zhu, X. H., Zhang, Y., Zhang, N., Ugurbil, K. & Chen, W. Noninvasive and three-dimensional imaging of CMRO2 in rats at 9.4 T: Reproducibility test and normothermia/hypothermia comparison study. J. Cereb. Blood Flow. Metab. 27, 1225–1234 (2007).
pubmed: 17133228 doi: 10.1038/sj.jcbfm.9600421
Xu, F., Ge, Y. & Lu, H. Noninvasive quantification of whole-brain cerebral metabolic rate of oxygen (CMRO2) by MRI. Magn. Reson. Med. 62, 141–148 (2009).
pubmed: 19353674 pmcid: 2726987 doi: 10.1002/mrm.21994
Shaw, K.; Hall, C. N. Data for figures in the paper ‘Neurovascular coupling and oxygenation are decreased in hippocampus compared to neocortex because of microvascular differences’. Figshare https://figshare.com/s/af41650f9277cec99c20 (2021).
Brain Energy Lab (Kira Shaw and Catherine Hall). BrainEnergyLab/HCvsV1_NVC_Manuscript: NVCinHCmanuscript_March2021_release1. Zenodo https://zenodo.org/record/4593010#.YFIfFC2l1R0 (2021).

Auteurs

K Shaw (K)

School of Psychology and Sussex Neuroscience, University of Sussex, Falmer, Brighton, United Kingdom.

L Bell (L)

School of Psychology and Sussex Neuroscience, University of Sussex, Falmer, Brighton, United Kingdom.

K Boyd (K)

School of Psychology and Sussex Neuroscience, University of Sussex, Falmer, Brighton, United Kingdom.

D M Grijseels (DM)

School of Psychology and Sussex Neuroscience, University of Sussex, Falmer, Brighton, United Kingdom.

D Clarke (D)

School of Psychology and Sussex Neuroscience, University of Sussex, Falmer, Brighton, United Kingdom.

O Bonnar (O)

School of Psychology and Sussex Neuroscience, University of Sussex, Falmer, Brighton, United Kingdom.

H S Crombag (HS)

School of Psychology and Sussex Neuroscience, University of Sussex, Falmer, Brighton, United Kingdom.

C N Hall (CN)

School of Psychology and Sussex Neuroscience, University of Sussex, Falmer, Brighton, United Kingdom. catherine.hall@sussex.ac.uk.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH