A unified online test battery for cognitive impulsivity reveals relationships with real-world impulsive behaviours.
Journal
Nature human behaviour
ISSN: 2397-3374
Titre abrégé: Nat Hum Behav
Pays: England
ID NLM: 101697750
Informations de publication
Date de publication:
11 2021
11 2021
Historique:
received:
04
02
2020
accepted:
16
04
2021
pubmed:
29
5
2021
medline:
30
12
2021
entrez:
28
5
2021
Statut:
ppublish
Résumé
Impulsive behaviours are a major contributor to the global burden of disease, but existing measures of cognitive impulsivity have suboptimal reliability and validity. Here, we introduce the Cognitive Impulsivity Suite, comprising three computerized/online tasks using a gamified interface. We conceptualize rapid-response impulsive behaviours (disinhibition) as arising from the failure of three distinct cognitive mechanisms: attentional control, information gathering and monitoring/shifting. We demonstrate the construct and criterion validity of the Cognitive Impulsivity Suite in an online community sample (N = 1,056), show test-retest reliability and between-subjects variability in a face-to-face community sample (N = 63), and replicate the results in a community and clinical sample (N = 578). The results support the theoretical architecture of the attentional control, information gathering and monitoring/shifting constructs. The Cognitive Impulsivity Suite demonstrated incremental criterion validity for prediction of real-world, addiction-related problems and is a promising tool for large-scale research on cognitive impulsivity.
Identifiants
pubmed: 34045720
doi: 10.1038/s41562-021-01127-3
pii: 10.1038/s41562-021-01127-3
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1562-1577Informations de copyright
© 2021. The Author(s), under exclusive licence to Springer Nature Limited.
Références
Nigg, J. T. Annual research review: on the relations among self-regulation, self-control, executive functioning, effortful control, cognitive control, impulsivity, risk-taking, and inhibition for developmental psychopathology. J. Child Psychol. Psychiatry 58, 361–383 (2017).
pubmed: 28035675
Vassileva, J. & Conrod, P. J. Impulsivities and addictions: a multidimensional integrative framework informing assessment and interventions for substance use disorders. Philos. Trans. R. Soc. Lond. B 374, 20180137 (2019).
Lima, I. M. M., Peckham, A. D. & Johnson, S. L. Cognitive deficits in bipolar disorders: implications for emotion. Clin. Psychol. Rev. 59, 126–136 (2018).
pubmed: 29195773
Dawson, A. et al. Neurocognitive correlates of medication-induced addictive behaviours in Parkinson’s disease: a systematic review. Eur. Neuropsychopharmacol. 28, 561–578 (2018).
pubmed: 29653742
Lansdall, C. J. et al. Apathy and impulsivity in frontotemporal lobar degeneration syndromes. Brain 140, 1792–1807 (2017).
pubmed: 28486594
pmcid: 5868210
Dir, A. L., Coskunpinar, A. & Cyders, M. A. A meta-analytic review of the relationship between adolescent risky sexual behavior and impulsivity across gender, age, and race. Clin. Psychol. Rev. 34, 551–562 (2014).
pubmed: 25261740
Hutson, P. H., Balodis, I. M. & Potenza, M. N. Binge-eating disorder: clinical and therapeutic advances. Pharmacol. Ther. 182, 15–27 (2018).
pubmed: 28830840
Navas, J. F. et al. Sex differences in the association between impulsivity and driving under the influence of alcohol in young adults: the specific role of sensation seeking. Accid. Anal. Prev. 124, 174–179 (2019).
pubmed: 30660833
Ciobanu, L. G. et al. The prevalence and burden of mental and substance use disorders in Australia: findings from the Global Burden of Disease Study 2015. Aust. N. Z. J. Psychiatry 52, 483–490 (2018).
pubmed: 29325437
Vigo, D., Thornicroft, G. & Atun, R. Estimating the true global burden of mental illness. Lancet Psychiatry 3, 171–178 (2016).
pubmed: 26851330
Hamilton, K. R. et al. Rapid-response impulsivity: definitions, measurement issues, and clinical implications. Personal. Disord. Theory Res. Treat. 6, 168–181 (2015).
Hamilton, K. R. et al. Choice impulsivity: definitions, measurement issues, and clinical implications. Personal. Disord. 6, 182–198 (2015).
pubmed: 25867841
pmcid: 4535726
Verdejo-Garcia, A., Lawrence, A. J. & Clark, L. Impulsivity as a vulnerability marker for substance-use disorders: review of findings from high-risk research, problem gamblers and genetic association studies. Neurosci. Biobehav. Rev. 32, 777–810 (2008).
pubmed: 18295884
Sharma, L., Markon, K. E. & Clark, L. A. Toward a theory of distinct types of ‘impulsive’ behaviors: a meta-analysis of self-report and behavioral measures. Psychol. Bull. 140, 374–408 (2014).
pubmed: 24099400
Fineberg, N. A. et al. New developments in human neurocognition: clinical, genetic, and brain imaging correlates of impulsivity and compulsivity. CNS Spectr. 19, 69–89 (2014).
pubmed: 24512640
pmcid: 4113335
Eisenberg, I. W. et al. Uncovering the structure of self-regulation through data-driven ontology discovery. Nat. Commun. 10, 2319 (2019).
pubmed: 31127115
pmcid: 6534563
Enkavi, A. Z. et al. Large-scale analysis of test-retest reliabilities of self-regulation measures. Proc. Natl Acad. Sci. USA 116, 5472–5477 (2019).
pubmed: 30842284
pmcid: 6431228
Enkavi, A. Z. & Poldrack, R. A. Implications of the lacking relationship between cognitive task and self-report measures for psychiatry. Biol. Psychiatry Cogn. Neurosci. Neuroimaging https://doi.org/10.1016/j.bpsc.2020.06.010 (2020).
doi: 10.1016/j.bpsc.2020.06.010
pubmed: 32712212
Dang, J., King, K. M. & Inzlicht, M. Why are self-report and behavioral measures weakly correlated? Trends Cogn. Sci. 24, 267–269 (2020).
pubmed: 32160564
pmcid: 7977810
Friedman, N. P. & Banich, M. T. Questionnaires and task-based measures assess different aspects of self-regulation: both are needed. Proc. Natl Acad. Sci. USA 116, 24396–24397 (2019).
pubmed: 31719199
pmcid: 6900513
Toplak, M. E., West, R. F. & Stanovich, K. E. Practitioner review: do performance-based measures and ratings of executive function assess the same construct? J. Child Psychol. Psychiatry 54, 131–143 (2013).
pubmed: 23057693
Schluter, M. G., Kim, H. S. & Hodgins, D. C. Obtaining quality data using behavioral measures of impulsivity in gambling research with Amazon’s Mechanical Turk. J. Behav. Addict. 7, 1122–1131 (2018).
pubmed: 30522339
pmcid: 6376390
Egner, T. The Wiley Handbook of Cognitive Control (Wiley, 2017).
Smilek, D., Carriere, J. S. & Cheyne, J. A. Failures of sustained attention in life, lab, and brain: ecological validity of the SART. Neuropsychologia 48, 2564–2570 (2010).
pubmed: 20452366
Voon, V. Models of impulsivity with a focus on waiting impulsivity: translational potential for neuropsychiatric disorders. Curr. Addict. Rep. 1, 281–288 (2014).
pubmed: 25346881
pmcid: 4201744
Fellows, L. K. The role of orbitofrontal cortex in decision making - a component process account. Link. Affect Action. Crit. Contribut. Orbitofrontal Cortex 1121, 421–430 (2007).
Stuss, D. T. & Alexander, M. P. Is there a dysexecutive syndrome? Philos. Trans. R. Soc. Lond. B 362, 901–915 (2007).
Frey, R., Pedroni, A., Mata, R., Rieskamp, J. & Hertwig, R. Risk preference shares the psychometric structure of major psychological traits. Sci. Adv. 3, e1701381 (2017).
pubmed: 28983511
pmcid: 5627985
Rey-Mermet, A., Gade, M. & Oberauer, K. Should we stop thinking about inhibition? Searching for individual and age differences in inhibition ability. J. Exp. Psychol. Learn Mem. Cogn. 44, 501–526 (2018).
pubmed: 28956944
Gomez, P., Perea, M. & Ratcliff, R. A model of the go/no-go task. J. Exp. Psychol. Gen. 136, 389–413 (2007).
pubmed: 17696690
pmcid: 2701630
Draheim, C., Mashburn, C. A., Martin, J. D. & Engle, R. W. Reaction time in differential and developmental research: a review and commentary on the problems and alternatives. Psychol. Bull. 145, 508–535 (2019).
pubmed: 30896187
Hedge, C., Powell, G. & Sumner, P. The reliability paradox: why robust cognitive tasks do not produce reliable individual differences. Behav. Res. Methods 50, 1166–1186 (2018).
pubmed: 28726177
Paap, K. R., Anders-Jefferson, R., Zimiga, B., Mason, L. & Mikulinsky, R. Interference scores have inadequate concurrent and convergent validity: should we stop using the flanker, Simon, and spatial Stroop tasks? Cogn. Res. Princ. Implic. 5, 7 (2020).
pubmed: 32056032
pmcid: 7018919
Cyders, M. A., Littlefield, A. K., Coffey, S. & Karyadi, K. A. Examination of a short English version of the UPPS-P impulsive behavior scale. Addict. Behav. 39, 1372–1376 (2014).
pubmed: 24636739
pmcid: 4055534
Cyders, M. A. & Coskunpinar, A. Measurement of constructs using self-report and behavioral lab tasks: is there overlap in nomothetic span and construct representation for impulsivity? Clin. Psychol. Rev. 31, 965–982 (2011).
pubmed: 21733491
Little, T. D., Slegers, D. W. & Card, N. A. A non-arbitrary method of identifying and scaling latent variables in SEM and MACS models. Struct. Equ. Modeling 13, 59–72 (2006).
Smith, C. E. & Cribbie, R. A. Multiplicity control in structural equation modeling: incorporating parameter dependencies. Struct. Equ. Modeling 20, 79–85 (2013).
Hayduk, L. A. & Littvay, L. Should researchers use single indicators, best indicators, or multiple indicators in structural equation models? BMC Med. Res. Methodol. 12, 159 (2012).
pubmed: 23088287
pmcid: 3506474
Hair, J. F., Black, W. C., Babin, B. J. & Anderson, R. E. Multivariate Data Analysis 7th edn (Pearson Education, 2014).
Podsakoff, P. M., MacKenzie, S. B. & Podsakoff, N. P. Sources of method bias in social science research and recommendations on how to control it. Annu Rev. Psychol. 63, 539–569 (2012).
pubmed: 21838546
Cohen, J. A power primer. Psychol. Bull. 112, 155–159 (1992).
pubmed: 19565683
Rosenthal, R. & DiMatteo, M. R. Meta-analysis: recent developments in quantitative methods for literature reviews. Annu. Rev. Psychol. 52, 59–82 (2001).
pubmed: 11148299
Friedman, N. P. & Miyake, A. The relations among inhibition and interference control functions: a latent-variable analysis. J. Exp. Psychol. Gen. 133, 101–135 (2004).
pubmed: 14979754
Bollen, K. A. & Noble, M. D. Structural equation models and the quantification of behavior. Proc. Natl Acad. Sci. USA 108, 15639–15646 (2011).
pubmed: 21730136
pmcid: 3176611
Verdejo-Garcia, A. & Albein-Urios, N. Impulsivity traits and neurocognitive mechanisms conferring vulnerability to substance use disorders. Neuropharmacology 183, 108402 (2021).
pubmed: 33189766
Ersche, K. D., Turton, A. J., Pradhan, S., Bullmore, E. T. & Robbins, T. W. Drug addiction endophenotypes: impulsive versus sensation-seeking personality traits. Biol. Psychiatry 68, 770–773 (2010).
pubmed: 20678754
pmcid: 3485555
Scharfen, J., Jansen, K. & Holling, H. Retest effects in working memory capacity tests: a meta-analysis. Psychon. Bull. Rev. 25, 2175–2199 (2018).
pubmed: 29907925
Vincent, A. S., Fuenzalida, E., Beneda-Bender, M., Bryant, D. J. & Peters, E. Neurocognitive assessment on a tablet device: test–retest reliability and practice effects of ANAM Mobile. Appl. Neuropsychol. Adult 28, 363–371 (2021).
pubmed: 31339361
Caddy, C. et al. Ketamine and other glutamate receptor modulators for depression in adults. Cochrane Database Syst. Rev. https://doi.org/10.1002/14651858.CD011612.pub2 (2015).
Enders, C. K. Applied Missing Data Analysis (Guilford Press, 2010).
Peters, J. & D’Esposito, M. The drift diffusion model as the choice rule in inter-temporal and risky choice: a case study in medial orbitofrontal cortex lesion patients and controls. PLoS Comput. Biol. 16, e1007615 (2020).
pubmed: 32310962
pmcid: 7192518
Pike, E., Marks, K. R., Stoops, W. W. & Rush, C. R. Cocaine-related stimuli impair inhibitory control in cocaine users following short stimulus onset asynchronies. Addiction 110, 1281–1286 (2015).
pubmed: 25873430
pmcid: 4503487
Banca, P. et al. Reflection impulsivity in binge drinking: behavioural and volumetric correlates. Addict. Biol. 21, 504–515 (2016).
pubmed: 25678093
Verdejo-Garcia, A., Bechara, A., Recknor, E. C. & Perez-Garcia, M. Decision-making and the Iowa Gambling Task: ecological validity in individuals with substance dependence. Psychol. Belg. 46, 55–78 (2006).
Lundin, A., Hallgren, M., Balliu, N. & Forsell, Y. The use of alcohol use disorders identification test (AUDIT) in detecting alcohol use disorder and risk drinking in the general population: validation of AUDIT using schedules for clinical assessment in neuropsychiatry. Alcohol Clin. Exp. Res 39, 158–165 (2015).
pubmed: 25623414
Hildebrand, M. The psychometric properties of the Drug Use Disorders Identification Test (DUDIT): a review of recent research. J. Subst. Abus. Treat. 53, 52–59 (2015).
Currie, S. R., Hodgins, D. C. & Casey, D. M. Validity of the Problem Gambling Severity Index interpretive categories. J. Gambl. Stud. 29, 311–327 (2013).
pubmed: 22426971
Bollen, K. A. et al. Testing Structural Equation Models (Sage, 1993).
Hancock, G. R. & Mueller, R. O. in Structural Equation Modeling: Present and Future: A Festschrift in Honor of Karl Jöreskog (eds Cudeck R., Du Toit S. & Sörbom D.) 195–216 (Scientific Software International, 2001).
Fornell, C. & Larcker, D. F. Evaluating structural equation models with unobservable variables and measurement error. J. Mark. Res. 18, 39–50 (1981).
Meredith, W. Measurement invariance, factor-analysis and factorial invariance. Psychometrika 58, 525–543 (1993).
Vandenberg, R. J. Toward a further understanding of and improvement in measurement invariance methods and procedures. Organ. Res. Methods 5, 139–158 (2002).
Muthen, L. K. & Muthen, B. O. Mplus User’s Guide: The Comprehensive Modeling Program for Applied Researchers 1st edn (Muthén & Muthén, 1998).
Silvia, E. S. M. & MacCallum, R. C. Some factors affecting the success of specification searches in covariance structure modeling. Multivar. Behav. Res. 23, 297–326 (1988).
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate – a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300 (1995).
Marsh, H. W., Hau, K. T. & Wen, Z. L. In search of golden rules: comment on hypothesis-testing approaches to setting cutoff values for fit indexes and dangers in overgeneralizing Hu and Bentler’s (1999) findings. Struct. Equ. Modeling 11, 320–341 (2004).
Hayduk, L., Cummings, G., Boadu, K., Pazderka-Robinson, H. & Boulianne, S. Testing! testing! one, two, three – Testing the theory in structural equation models! Pers. Individ. Differ. 42, 841–850 (2007).
Byrne, B. M., Shavelson, R. J. & Muthen, B. Testing for the equivalence of factor covariance and mean Structures – the issue of partial measurement invariance. Psychol. Bull. 105, 456–466 (1989).
Kline, R. B. Principles and Practice of Structural Equation modeling 4th edn (Guilford Press, 2015).
Wagenmakers, E. J. A practical solution to the pervasive problems of p values. Psychon. Bull. Rev. 14, 779–804 (2007).
pubmed: 18087943
Bollen, K. A. Modeling strategies: in search of the holy grail. Struct. Equ. Modeling 7, 74–81 (2000).
Putnick, D. L. & Bornstein, M. H. Measurement invariance conventions and reporting: the state of the art and future directions for psychological research. Dev. Rev. 41, 71–90 (2016).
pubmed: 27942093
pmcid: 5145197
Yoon, M. & Kim, E. S. A comparison of sequential and nonsequential specification searches in testing factorial invariance. Behav. Res. Methods 46, 1199–1206 (2014).
pubmed: 24356995
Hair, J. F., Black, W. C., Babin, B. J. & Anderson, R. E. Multivariate Data Analysis 7th edn (Pearson, 2014).
Wasserstein, R. L., Schirm, A. L. & Lazar, N. A. Moving to a world beyond ‘p < 0.05’. Am. Stat. 73, 1–19 (2019).
Joreskog, K. G., Olsson, U. H. & Wallentin, F. Y. Multivariate Analysis with LISREL 1st edn (Springer, 2016).
McArdle, J. J. Causal-modeling applied to psychonomic systems simulation. Behav. Res. Methods Instrum. 12, 193–209 (1980).
Shrout, P. E. & Fleiss, J. L. Intraclass correlations: uses in assessing rater reliability. Psychol. Bull. 86, 420–428 (1979).
pubmed: 18839484
Cicchetti, D. V. & Sparrow, S. A. Developing criteria for establishing interrater reliability of specific items – applications to assessment of adaptive-behavior. Am. J. Ment. Defic. 86, 127–137 (1981).
pubmed: 7315877