Analyses of Inositol Phosphates and Phosphoinositides by Strong Anion Exchange (SAX)-HPLC.
Anion Exchange Resins
/ chemistry
Anions
/ chemistry
Arabidopsis
/ metabolism
Arabidopsis Proteins
/ isolation & purification
Chromatography, High Pressure Liquid
/ methods
Inositol
/ chemistry
Inositol Phosphates
/ chemistry
Phosphatidylinositols
/ chemistry
Phosphorylation
Plants
/ chemistry
Polyphosphates
/ chemistry
Seeds
/ chemistry
Signal Transduction
/ physiology
Arabidopsis thaliana
Cell signaling
Inositol polyphosphates
Inositol pyrophosphates
Nutrient sensing
Phosphoinositides
Phytic acid
PtdIns(4,5)P2
Strong anion exchange HPLC
Journal
Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969
Informations de publication
Date de publication:
2021
2021
Historique:
entrez:
28
5
2021
pubmed:
29
5
2021
medline:
23
6
2021
Statut:
ppublish
Résumé
The phosphate esters of myo-inositol (Ins) occur ubiquitously in biology. These molecules exist as soluble or membrane-resident derivatives and regulate a plethora of cellular functions including phosphate homeostasis, DNA repair, vesicle trafficking, metabolism, cell polarity, tip-directed growth, and membrane morphogenesis. Phosphorylation of all inositol hydroxyl groups generates phytic acid (InsP
Identifiants
pubmed: 34047987
doi: 10.1007/978-1-0716-1362-7_20
doi:
Substances chimiques
Anion Exchange Resins
0
Anions
0
Arabidopsis Proteins
0
Inositol Phosphates
0
Phosphatidylinositols
0
Polyphosphates
0
Inositol
4L6452S749
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
365-378Subventions
Organisme : Medical Research Council
ID : MR/T028904/1
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_UU_12018/4
Pays : United Kingdom
Références
Streb H, Irvine RF, Berridge MJ, Schulz I (1983) Release of Ca
doi: 10.1038/306067a0
York JD, Odom AR, Murphy R, Ives EB, Wente SR (1999) A phospholipase C-dependent inositol polyphosphate kinase pathway required for efficient messenger RNA export. Science 285(5424):96–100
doi: 10.1126/science.285.5424.96
Munnik T, Nielsen E (2011) Green light for polyphosphoinositide signals in plants. Curr Opin Plant Biol 14(5):489–497. https://doi.org/10.1016/j.pbi.2011.06.007
doi: 10.1016/j.pbi.2011.06.007
pubmed: 21775194
Munnik T, Vermeer JE (2010) Osmotic stress-induced phosphoinositide and inositol phosphate signalling in plants. Plant Cell Environ 33(4):655–669. https://doi.org/10.1111/j.1365-3040.2009.02097.x
doi: 10.1111/j.1365-3040.2009.02097.x
pubmed: 20429089
Raboy V (2003) myo-Inositol-1,2,3,4,5,6-hexakisphosphate. Phytochemistry 64(6):1033–1043
doi: 10.1016/S0031-9422(03)00446-1
Murphy AM, Otto B, Brearley CA, Carr JP, Hanke DE (2008) A role for inositol hexakisphosphate in the maintenance of basal resistance to plant pathogens. Plant J 56(4):638–652. https://doi.org/10.1111/j.1365-313X.2008.03629.x
doi: 10.1111/j.1365-313X.2008.03629.x
pubmed: 18643983
Lee HS, Lee DH, Cho HK, Kim SH, Auh JH, Pai HS (2015) InsP6-sensitive variants of the Gle1 mRNA export factor rescue growth and fertility defects of the ipk1 low-phytic-acid mutation in Arabidopsis. Plant Cell 27(2):417–431. https://doi.org/10.1105/tpc.114.132134
doi: 10.1105/tpc.114.132134
pubmed: 25670768
pmcid: 4456929
Kuo HF, Hsu YY, Lin WC, Chen KY, Munnik T, Brearley CA, Chiou TJ (2018) Arabidopsis inositol phosphate kinases IPK1 and ITPK1 constitute a metabolic pathway in maintaining phosphate homeostasis. Plant J. https://doi.org/10.1111/tpj.13974
Stephens L, Radenberg T, Thiel U, Vogel G, Khoo KH, Dell A, Jackson TR, Hawkins PT, Mayr GW (1993) The detection, purification, structural characterization, and metabolism of diphosphoinositol pentakisphosphate(s) and bisdiphosphoinositol tetrakisphosphate(s). J Biol Chem 268(6):4009–4015
doi: 10.1016/S0021-9258(18)53571-7
Menniti FS, Miller RN, Putney JW Jr, Shears SB (1993) Turnover of inositol polyphosphate pyrophosphates in pancreatoma cells. J Biol Chem 268(6):3850–3856
doi: 10.1016/S0021-9258(18)53551-1
York SJ, Armbruster BN, Greenwell P, Petes TD, York JD (2005) Inositol diphosphate signaling regulates telomere length. J Biol Chem 280(6):4264–4269. https://doi.org/10.1074/jbc.M412070200
doi: 10.1074/jbc.M412070200
pubmed: 15561716
Pulloor NK, Nair S, McCaffrey K, Kostic AD, Bist P, Weaver JD, Riley AM, Tyagi R, Uchil PD, York JD, Snyder SH, Garcia-Sastre A, Potter BV, Lin R, Shears SB, Xavier RJ, Krishnan MN (2014) Human genome-wide RNAi screen identifies an essential role for inositol pyrophosphates in Type-I interferon response. PLoS Pathog 10(2):e1003981. https://doi.org/10.1371/journal.ppat.1003981
doi: 10.1371/journal.ppat.1003981
pubmed: 24586175
pmcid: 3937324
Saiardi A, Sciambi C, McCaffery JM, Wendland B, Snyder SH (2002) Inositol pyrophosphates regulate endocytic trafficking. Proc Natl Acad Sci U S A 99(22):14206–14211. https://doi.org/10.1073/pnas.212527899
doi: 10.1073/pnas.212527899
pubmed: 12391334
pmcid: 137862
Wilson MS, Livermore TM, Saiardi A (2013) Inositol pyrophosphates: between signalling and metabolism. Biochem J 452(3):369–379. https://doi.org/10.1042/BJ20130118
doi: 10.1042/BJ20130118
pubmed: 23725456
Thota SG, Bhandari R (2015) The emerging roles of inositol pyrophosphates in eukaryotic cell physiology. J Biosci 40(3):593–605
doi: 10.1007/s12038-015-9549-x
Saiardi A, Erdjument-Bromage H, Snowman AM, Tempst P, Snyder SH (1999) Synthesis of diphosphoinositol pentakisphosphate by a newly identified family of higher inositol polyphosphate kinases. Curr Biol 9(22):1323–1326
doi: 10.1016/S0960-9822(00)80055-X
Mulugu S, Bai W, Fridy PC, Bastidas RJ, Otto JC, Dollins DE, Haystead TA, Ribeiro AA, York JD (2007) A conserved family of enzymes that phosphorylate inositol hexakisphosphate. Science 316(5821):106–109. https://doi.org/10.1126/science.1139099
doi: 10.1126/science.1139099
pubmed: 17412958
Lin H, Fridy PC, Ribeiro AA, Choi JH, Barma DK, Vogel G, Falck JR, Shears SB, York JD, Mayr GW (2009) Structural analysis and detection of biological inositol pyrophosphates reveal that the family of VIP/diphosphoinositol pentakisphosphate kinases are 1/3-kinases. J Biol Chem 284(3):1863–1872. https://doi.org/10.1074/jbc.M805686200
doi: 10.1074/jbc.M805686200
pubmed: 18981179
pmcid: 2615522
Flores S, Smart CC (2000) Abscisic acid-induced changes in inositol metabolism in Spirodela polyrrhiza. Planta 211(6):823–832. https://doi.org/10.1007/s004250000348
doi: 10.1007/s004250000348
pubmed: 11144267
Brearley CA, Hanke DE (1996) Inositol phosphates in barley (Hordeum vulgare L.) aleurone tissue are stereochemically similar to the products of breakdown of InsP6 in vitro by wheat-bran phytase. Biochem J 318(Pt 1):279–286. https://doi.org/10.1042/bj3180279
doi: 10.1042/bj3180279
pubmed: 8761483
pmcid: 1217619
Dorsch JA, Cook A, Young KA, Anderson JM, Bauman AT, Volkmann CJ, Murthy PP, Raboy V (2003) Seed phosphorus and inositol phosphate phenotype of barley low phytic acid genotypes. Phytochemistry 62(5):691–706. https://doi.org/10.1016/s0031-9422(02)00610-6
doi: 10.1016/s0031-9422(02)00610-6
pubmed: 12620321
Desai M, Rangarajan P, Donahue JL, Williams SP, Land ES, Mandal MK, Phillippy BQ, Perera IY, Raboy V, Gillaspy GE (2014) Two inositol hexakisphosphate kinases drive inositol pyrophosphate synthesis in plants. Plant J 80(4):642–653. https://doi.org/10.1111/tpj.12669
doi: 10.1111/tpj.12669
pubmed: 25231822
Laha D, Johnen P, Azevedo C, Dynowski M, Weiss M, Capolicchio S, Mao H, Iven T, Steenbergen M, Freyer M, Gaugler P, de Campos MK, Zheng N, Feussner I, Jessen HJ, Van Wees SC, Saiardi A, Schaaf G (2015) VIH2 regulates the synthesis of inositol pyrophosphate InsP8 and jasmonate-dependent defenses in Arabidopsis. Plant Cell 27(4):1082–1097. https://doi.org/10.1105/tpc.114.135160
doi: 10.1105/tpc.114.135160
pubmed: 25901085
pmcid: 4558690
Bluher D, Laha D, Thieme S, Hofer A, Eschen-Lippold L, Masch A, Balcke G, Pavlovic I, Nagel O, Schonsky A, Hinkelmann R, Worner J, Parvin N, Greiner R, Weber S, Tissier A, Schutkowski M, Lee J, Jessen H, Schaaf G, Bonas U (2017) A 1-phytase type III effector interferes with plant hormone signaling. Nat Commun 8(1):2159. https://doi.org/10.1038/s41467-017-02195-8
doi: 10.1038/s41467-017-02195-8
pubmed: 29255246
pmcid: 5735085
Laha D, Parvin N, Dynowski M, Johnen P, Mao H, Bitters ST, Zheng N, Schaaf G (2016) Inositol polyphosphate binding specificity of the jasmonate receptor complex. Plant Physiol 171(4):2364–2370. https://doi.org/10.1104/pp.16.00694
doi: 10.1104/pp.16.00694
pubmed: 27288364
pmcid: 4972291
Wild R, Gerasimaite R, Jung JY, Truffault V, Pavlovic I, Schmidt A, Saiardi A, Jessen HJ, Poirier Y, Hothorn M, Mayer A (2016) Control of eukaryotic phosphate homeostasis by inositol polyphosphate sensor domains. Science 352(6288):986–990. https://doi.org/10.1126/science.aad9858
doi: 10.1126/science.aad9858
pubmed: 27080106
Zhu J, Lau K, Puschmann R, Harmel RK, Zhang Y, Pries V, Gaugler P, Broger L, Dutta AK, Jessen HJ, Schaaf G, Fernie AR, Hothorn LA, Fiedler D, Hothorn M (2019) Two bifunctional inositol pyrophosphate kinases/phosphatases control plant phosphate homeostasis. eLife 8. doi: https://doi.org/10.7554/eLife.43582
Dong J, Ma G, Sui L, Wei M, Satheesh V, Zhang R, Ge S, Li J, Zhang TE, Wittwer C, Jessen HJ, Zhang H, An GY, Chao DY, Liu D, Lei M (2019) Inositol pyrophosphate InsP8 acts as an intracellular phosphate signal in Arabidopsis. Mol Plant 12(11):1463–1473. https://doi.org/10.1016/j.molp.2019.08.002
doi: 10.1016/j.molp.2019.08.002
pubmed: 31419530
Couso I, Evans BS, Li J, Liu Y, Ma F, Diamond S, Allen DK, Umen JG (2016) Synergism between inositol polyphosphates and TOR kinase Signaling in nutrient sensing, growth control, and lipid metabolism in Chlamydomonas. Plant Cell 28(9):2026–2042. https://doi.org/10.1105/tpc.16.00351
doi: 10.1105/tpc.16.00351
pubmed: 27600537
pmcid: 5059802
Laha D (2017) Functional characterization of inositol pyrophosphates in Arabidopsis thaliana. Shaker Verlag, Herzogenrath. 978-3-8440-5493-4
Laha D, Parvin N, Hofer A, Giehl RFH, Fernandez-Rebollo N, von Wiren N, Saiardi A, Jessen HJ, Schaaf G (2019) Arabidopsis ITPK1 and ITPK2 have an evolutionarily conserved phytic acid kinase activity. ACS Chem Biol 14(10):2127–2133. https://doi.org/10.1021/acschembio.9b00423
doi: 10.1021/acschembio.9b00423
pubmed: 31525024
Dickson EJ, Hille B (2019) Understanding phosphoinositides: rare, dynamic, and essential membrane phospholipids. Biochem J 476(1):1–23. https://doi.org/10.1042/BCJ20180022
doi: 10.1042/BCJ20180022
pubmed: 30617162
pmcid: 6342281
Grabon A, Bankaitis VA, McDermott MI (2019) The interface between phosphatidylinositol transfer protein function and phosphoinositide signaling in higher eukaryotes. J Lipid Res 60(2):242–268. https://doi.org/10.1194/jlr.R089730
doi: 10.1194/jlr.R089730
pubmed: 30504233
Kf de Campos M, Schaaf G (2017) The regulation of cell polarity by lipid transfer proteins of the SEC14 family. Curr Opin Plant Biol 40:158–168. https://doi.org/10.1016/j.pbi.2017.09.007
doi: 10.1016/j.pbi.2017.09.007
pubmed: 29017091
Hempel F, Stenzel I, Heilmann M, Krishnamoorthy P, Menzel W, Golbik R, Helm S, Dobritzsch D, Baginsky S, Lee J, Hoehenwarter W, Heilmann I (2017) MAPKs influence pollen tube growth by controlling the formation of phosphatidylinositol 4,5-bisphosphate in an apical plasma membrane domain. Plant Cell 29(12):3030–3050. https://doi.org/10.1105/tpc.17.00543
doi: 10.1105/tpc.17.00543
pubmed: 29167320
pmcid: 5757277
Tejos R, Sauer M, Vanneste S, Palacios-Gomez M, Li H, Heilmann M, van Wijk R, Vermeer JE, Heilmann I, Munnik T, Friml J (2014) Bipolar plasma membrane distribution of phosphoinositides and their requirement for auxin-mediated cell polarity and patterning in Arabidopsis. Plant Cell 26(5):2114–2128. https://doi.org/10.1105/tpc.114.126185
doi: 10.1105/tpc.114.126185
pubmed: 24876254
pmcid: 4079372
Kusano H, Testerink C, Vermeer JE, Tsuge T, Shimada H, Oka A, Munnik T, Aoyama T (2008) The Arabidopsis phosphatidylinositol phosphate 5-kinase PIP5K3 is a key regulator of root hair tip growth. Plant Cell 20(2):367–380. https://doi.org/10.1105/tpc.107.056119
doi: 10.1105/tpc.107.056119
pubmed: 18281506
pmcid: 2276443
Stenzel I, Ischebeck T, Konig S, Holubowska A, Sporysz M, Hause B, Heilmann I (2008) The type B phosphatidylinositol-4-phosphate 5-kinase 3 is essential for root hair formation in Arabidopsis thaliana. Plant Cell 20(1):124–141. https://doi.org/10.1105/tpc.107.052852
doi: 10.1105/tpc.107.052852
pubmed: 18178770
pmcid: 2254927
Lin F, Krishnamoorthy P, Schubert V, Hause G, Heilmann M, Heilmann I (2019) A dual role for cell plate-associated PI4Kbeta in endocytosis and phragmoplast dynamics during plant somatic cytokinesis. EMBO J 38(4). https://doi.org/10.15252/embj.2018100303
Stolz LE, Kuo WJ, Longchamps J, Sekhon MK, York JD (1998) INP51, a yeast inositol polyphosphate 5-phosphatase required for phosphatidylinositol 4,5-bisphosphate homeostasis and whose absence confers a cold-resistant phenotype. J Biol Chem 273(19):11852–11861. https://doi.org/10.1074/jbc.273.19.11852
doi: 10.1074/jbc.273.19.11852
pubmed: 9565610
Bonangelino CJ, Nau JJ, Duex JE, Brinkman M, Wurmser AE, Gary JD, Emr SD, Weisman LS (2002) Osmotic stress-induced increase of phosphatidylinositol 3,5-bisphosphate requires Vac14p, an activator of the lipid kinase Fab1p. J Cell Biol 156(6):1015–1028. https://doi.org/10.1083/jcb.200201002
doi: 10.1083/jcb.200201002
pubmed: 11889142
pmcid: 2173454
Duina AA, Miller ME, Keeney JB (2014) Budding yeast for budding geneticists: a primer on the Saccharomyces cerevisiae model system. Genetics 197(1):33–48. https://doi.org/10.1534/genetics.114.163188
doi: 10.1534/genetics.114.163188
pubmed: 24807111
pmcid: 4012490
Audhya A, Emr SD (2003) Regulation of PI4,5P2 synthesis by nuclear-cytoplasmic shuttling of the Mss4 lipid kinase. EMBO J 22(16):4223–4236. https://doi.org/10.1093/emboj/cdg397
doi: 10.1093/emboj/cdg397
pubmed: 12912920
pmcid: 175787
Stefan CJ, Audhya A, Emr SD (2002) The yeast synaptojanin-like proteins control the cellular distribution of phosphatidylinositol (4,5)-bisphosphate. Mol Biol Cell 13(2):542–557. https://doi.org/10.1091/mbc.01-10-0476
doi: 10.1091/mbc.01-10-0476
pubmed: 11854411
pmcid: 65648
Schu PV, Takegawa K, Fry MJ, Stack JH, Waterfield MD, Emr SD (1993) Phosphatidylinositol 3-kinase encoded by yeast VPS34 gene essential for protein sorting. Science 260(5104):88–91. https://doi.org/10.1126/science.8385367
doi: 10.1126/science.8385367
pubmed: 8385367
Schaaf G, Ortlund EA, Tyeryar KR, Mousley CJ, Ile KE, Garrett TA, Ren J, Woolls MJ, Raetz CR, Redinbo MR, Bankaitis VA (2008) Functional anatomy of phospholipid binding and regulation of phosphoinositide homeostasis by proteins of the sec14 superfamily. Mol Cell 29(2):191–206. https://doi.org/10.1016/j.molcel.2007.11.026
doi: 10.1016/j.molcel.2007.11.026
pubmed: 18243114
pmcid: 7808562
Phillips SE, Sha B, Topalof L, Xie Z, Alb JG, Klenchin VA, Swigart P, Cockcroft S, Martin TF, Luo M, Bankaitis VA (1999) Yeast Sec14p deficient in phosphatidylinositol transfer activity is functional in vivo. Mol Cell 4(2):187–197. https://doi.org/10.1016/s1097-2765(00)80366-4
doi: 10.1016/s1097-2765(00)80366-4
pubmed: 10488334
Munnik T (2013) Analysis of D3-,4-,5-phosphorylated phosphoinositides using HPLC. Methods Mol Biol 1009:17–24. https://doi.org/10.1007/978-1-62703-401-2_2
doi: 10.1007/978-1-62703-401-2_2
pubmed: 23681519
Scholl RL, May ST, Ware DH (2000) Seed and molecular resources for Arabidopsis. Plant Physiol 124(4):1477–1480. https://doi.org/10.1104/pp.124.4.1477
doi: 10.1104/pp.124.4.1477
pubmed: 11115863
pmcid: 1539300
Robinson JS, Klionsky DJ, Banta LM, Emr SD (1988) Protein sorting in Saccharomyces cerevisiae: isolation of mutants defective in the delivery and processing of multiple vacuolar hydrolases. Mol Cell Biol 8(11):4936–4948. https://doi.org/10.1128/mcb.8.11.4936
doi: 10.1128/mcb.8.11.4936
pubmed: 3062374
pmcid: 365587
Zonneveld BJM (1986) Cheap and simple yeast media. J Microbiol Meth 4(5–6):287–291. https://doi.org/10.1016/0167-7012(86)90040-0
doi: 10.1016/0167-7012(86)90040-0
Azevedo C, Saiardi A (2006) Extraction and analysis of soluble inositol polyphosphates from yeast. Nat Protoc 1(5):2416–2422. https://doi.org/10.1038/nprot.2006.337
doi: 10.1038/nprot.2006.337
pubmed: 17406485
Stevenson-Paulik J, Bastidas RJ, Chiou ST, Frye RA, York JD (2005) Generation of phytate-free seeds in Arabidopsis through disruption of inositol polyphosphate kinases. Proc Natl Acad Sci U S A 102(35):12612–12617. https://doi.org/10.1073/pnas.0504172102
doi: 10.1073/pnas.0504172102
pubmed: 16107538
pmcid: 1194928