Analyses of Inositol Phosphates and Phosphoinositides by Strong Anion Exchange (SAX)-HPLC.


Journal

Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969

Informations de publication

Date de publication:
2021
Historique:
entrez: 28 5 2021
pubmed: 29 5 2021
medline: 23 6 2021
Statut: ppublish

Résumé

The phosphate esters of myo-inositol (Ins) occur ubiquitously in biology. These molecules exist as soluble or membrane-resident derivatives and regulate a plethora of cellular functions including phosphate homeostasis, DNA repair, vesicle trafficking, metabolism, cell polarity, tip-directed growth, and membrane morphogenesis. Phosphorylation of all inositol hydroxyl groups generates phytic acid (InsP

Identifiants

pubmed: 34047987
doi: 10.1007/978-1-0716-1362-7_20
doi:

Substances chimiques

Anion Exchange Resins 0
Anions 0
Arabidopsis Proteins 0
Inositol Phosphates 0
Phosphatidylinositols 0
Polyphosphates 0
Inositol 4L6452S749

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

365-378

Subventions

Organisme : Medical Research Council
ID : MR/T028904/1
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_UU_12018/4
Pays : United Kingdom

Références

Streb H, Irvine RF, Berridge MJ, Schulz I (1983) Release of Ca
doi: 10.1038/306067a0
York JD, Odom AR, Murphy R, Ives EB, Wente SR (1999) A phospholipase C-dependent inositol polyphosphate kinase pathway required for efficient messenger RNA export. Science 285(5424):96–100
doi: 10.1126/science.285.5424.96
Munnik T, Nielsen E (2011) Green light for polyphosphoinositide signals in plants. Curr Opin Plant Biol 14(5):489–497. https://doi.org/10.1016/j.pbi.2011.06.007
doi: 10.1016/j.pbi.2011.06.007 pubmed: 21775194
Munnik T, Vermeer JE (2010) Osmotic stress-induced phosphoinositide and inositol phosphate signalling in plants. Plant Cell Environ 33(4):655–669. https://doi.org/10.1111/j.1365-3040.2009.02097.x
doi: 10.1111/j.1365-3040.2009.02097.x pubmed: 20429089
Raboy V (2003) myo-Inositol-1,2,3,4,5,6-hexakisphosphate. Phytochemistry 64(6):1033–1043
doi: 10.1016/S0031-9422(03)00446-1
Murphy AM, Otto B, Brearley CA, Carr JP, Hanke DE (2008) A role for inositol hexakisphosphate in the maintenance of basal resistance to plant pathogens. Plant J 56(4):638–652. https://doi.org/10.1111/j.1365-313X.2008.03629.x
doi: 10.1111/j.1365-313X.2008.03629.x pubmed: 18643983
Lee HS, Lee DH, Cho HK, Kim SH, Auh JH, Pai HS (2015) InsP6-sensitive variants of the Gle1 mRNA export factor rescue growth and fertility defects of the ipk1 low-phytic-acid mutation in Arabidopsis. Plant Cell 27(2):417–431. https://doi.org/10.1105/tpc.114.132134
doi: 10.1105/tpc.114.132134 pubmed: 25670768 pmcid: 4456929
Kuo HF, Hsu YY, Lin WC, Chen KY, Munnik T, Brearley CA, Chiou TJ (2018) Arabidopsis inositol phosphate kinases IPK1 and ITPK1 constitute a metabolic pathway in maintaining phosphate homeostasis. Plant J. https://doi.org/10.1111/tpj.13974
Stephens L, Radenberg T, Thiel U, Vogel G, Khoo KH, Dell A, Jackson TR, Hawkins PT, Mayr GW (1993) The detection, purification, structural characterization, and metabolism of diphosphoinositol pentakisphosphate(s) and bisdiphosphoinositol tetrakisphosphate(s). J Biol Chem 268(6):4009–4015
doi: 10.1016/S0021-9258(18)53571-7
Menniti FS, Miller RN, Putney JW Jr, Shears SB (1993) Turnover of inositol polyphosphate pyrophosphates in pancreatoma cells. J Biol Chem 268(6):3850–3856
doi: 10.1016/S0021-9258(18)53551-1
York SJ, Armbruster BN, Greenwell P, Petes TD, York JD (2005) Inositol diphosphate signaling regulates telomere length. J Biol Chem 280(6):4264–4269. https://doi.org/10.1074/jbc.M412070200
doi: 10.1074/jbc.M412070200 pubmed: 15561716
Pulloor NK, Nair S, McCaffrey K, Kostic AD, Bist P, Weaver JD, Riley AM, Tyagi R, Uchil PD, York JD, Snyder SH, Garcia-Sastre A, Potter BV, Lin R, Shears SB, Xavier RJ, Krishnan MN (2014) Human genome-wide RNAi screen identifies an essential role for inositol pyrophosphates in Type-I interferon response. PLoS Pathog 10(2):e1003981. https://doi.org/10.1371/journal.ppat.1003981
doi: 10.1371/journal.ppat.1003981 pubmed: 24586175 pmcid: 3937324
Saiardi A, Sciambi C, McCaffery JM, Wendland B, Snyder SH (2002) Inositol pyrophosphates regulate endocytic trafficking. Proc Natl Acad Sci U S A 99(22):14206–14211. https://doi.org/10.1073/pnas.212527899
doi: 10.1073/pnas.212527899 pubmed: 12391334 pmcid: 137862
Wilson MS, Livermore TM, Saiardi A (2013) Inositol pyrophosphates: between signalling and metabolism. Biochem J 452(3):369–379. https://doi.org/10.1042/BJ20130118
doi: 10.1042/BJ20130118 pubmed: 23725456
Thota SG, Bhandari R (2015) The emerging roles of inositol pyrophosphates in eukaryotic cell physiology. J Biosci 40(3):593–605
doi: 10.1007/s12038-015-9549-x
Saiardi A, Erdjument-Bromage H, Snowman AM, Tempst P, Snyder SH (1999) Synthesis of diphosphoinositol pentakisphosphate by a newly identified family of higher inositol polyphosphate kinases. Curr Biol 9(22):1323–1326
doi: 10.1016/S0960-9822(00)80055-X
Mulugu S, Bai W, Fridy PC, Bastidas RJ, Otto JC, Dollins DE, Haystead TA, Ribeiro AA, York JD (2007) A conserved family of enzymes that phosphorylate inositol hexakisphosphate. Science 316(5821):106–109. https://doi.org/10.1126/science.1139099
doi: 10.1126/science.1139099 pubmed: 17412958
Lin H, Fridy PC, Ribeiro AA, Choi JH, Barma DK, Vogel G, Falck JR, Shears SB, York JD, Mayr GW (2009) Structural analysis and detection of biological inositol pyrophosphates reveal that the family of VIP/diphosphoinositol pentakisphosphate kinases are 1/3-kinases. J Biol Chem 284(3):1863–1872. https://doi.org/10.1074/jbc.M805686200
doi: 10.1074/jbc.M805686200 pubmed: 18981179 pmcid: 2615522
Flores S, Smart CC (2000) Abscisic acid-induced changes in inositol metabolism in Spirodela polyrrhiza. Planta 211(6):823–832. https://doi.org/10.1007/s004250000348
doi: 10.1007/s004250000348 pubmed: 11144267
Brearley CA, Hanke DE (1996) Inositol phosphates in barley (Hordeum vulgare L.) aleurone tissue are stereochemically similar to the products of breakdown of InsP6 in vitro by wheat-bran phytase. Biochem J 318(Pt 1):279–286. https://doi.org/10.1042/bj3180279
doi: 10.1042/bj3180279 pubmed: 8761483 pmcid: 1217619
Dorsch JA, Cook A, Young KA, Anderson JM, Bauman AT, Volkmann CJ, Murthy PP, Raboy V (2003) Seed phosphorus and inositol phosphate phenotype of barley low phytic acid genotypes. Phytochemistry 62(5):691–706. https://doi.org/10.1016/s0031-9422(02)00610-6
doi: 10.1016/s0031-9422(02)00610-6 pubmed: 12620321
Desai M, Rangarajan P, Donahue JL, Williams SP, Land ES, Mandal MK, Phillippy BQ, Perera IY, Raboy V, Gillaspy GE (2014) Two inositol hexakisphosphate kinases drive inositol pyrophosphate synthesis in plants. Plant J 80(4):642–653. https://doi.org/10.1111/tpj.12669
doi: 10.1111/tpj.12669 pubmed: 25231822
Laha D, Johnen P, Azevedo C, Dynowski M, Weiss M, Capolicchio S, Mao H, Iven T, Steenbergen M, Freyer M, Gaugler P, de Campos MK, Zheng N, Feussner I, Jessen HJ, Van Wees SC, Saiardi A, Schaaf G (2015) VIH2 regulates the synthesis of inositol pyrophosphate InsP8 and jasmonate-dependent defenses in Arabidopsis. Plant Cell 27(4):1082–1097. https://doi.org/10.1105/tpc.114.135160
doi: 10.1105/tpc.114.135160 pubmed: 25901085 pmcid: 4558690
Bluher D, Laha D, Thieme S, Hofer A, Eschen-Lippold L, Masch A, Balcke G, Pavlovic I, Nagel O, Schonsky A, Hinkelmann R, Worner J, Parvin N, Greiner R, Weber S, Tissier A, Schutkowski M, Lee J, Jessen H, Schaaf G, Bonas U (2017) A 1-phytase type III effector interferes with plant hormone signaling. Nat Commun 8(1):2159. https://doi.org/10.1038/s41467-017-02195-8
doi: 10.1038/s41467-017-02195-8 pubmed: 29255246 pmcid: 5735085
Laha D, Parvin N, Dynowski M, Johnen P, Mao H, Bitters ST, Zheng N, Schaaf G (2016) Inositol polyphosphate binding specificity of the jasmonate receptor complex. Plant Physiol 171(4):2364–2370. https://doi.org/10.1104/pp.16.00694
doi: 10.1104/pp.16.00694 pubmed: 27288364 pmcid: 4972291
Wild R, Gerasimaite R, Jung JY, Truffault V, Pavlovic I, Schmidt A, Saiardi A, Jessen HJ, Poirier Y, Hothorn M, Mayer A (2016) Control of eukaryotic phosphate homeostasis by inositol polyphosphate sensor domains. Science 352(6288):986–990. https://doi.org/10.1126/science.aad9858
doi: 10.1126/science.aad9858 pubmed: 27080106
Zhu J, Lau K, Puschmann R, Harmel RK, Zhang Y, Pries V, Gaugler P, Broger L, Dutta AK, Jessen HJ, Schaaf G, Fernie AR, Hothorn LA, Fiedler D, Hothorn M (2019) Two bifunctional inositol pyrophosphate kinases/phosphatases control plant phosphate homeostasis. eLife 8. doi: https://doi.org/10.7554/eLife.43582
Dong J, Ma G, Sui L, Wei M, Satheesh V, Zhang R, Ge S, Li J, Zhang TE, Wittwer C, Jessen HJ, Zhang H, An GY, Chao DY, Liu D, Lei M (2019) Inositol pyrophosphate InsP8 acts as an intracellular phosphate signal in Arabidopsis. Mol Plant 12(11):1463–1473. https://doi.org/10.1016/j.molp.2019.08.002
doi: 10.1016/j.molp.2019.08.002 pubmed: 31419530
Couso I, Evans BS, Li J, Liu Y, Ma F, Diamond S, Allen DK, Umen JG (2016) Synergism between inositol polyphosphates and TOR kinase Signaling in nutrient sensing, growth control, and lipid metabolism in Chlamydomonas. Plant Cell 28(9):2026–2042. https://doi.org/10.1105/tpc.16.00351
doi: 10.1105/tpc.16.00351 pubmed: 27600537 pmcid: 5059802
Laha D (2017) Functional characterization of inositol pyrophosphates in Arabidopsis thaliana. Shaker Verlag, Herzogenrath. 978-3-8440-5493-4
Laha D, Parvin N, Hofer A, Giehl RFH, Fernandez-Rebollo N, von Wiren N, Saiardi A, Jessen HJ, Schaaf G (2019) Arabidopsis ITPK1 and ITPK2 have an evolutionarily conserved phytic acid kinase activity. ACS Chem Biol 14(10):2127–2133. https://doi.org/10.1021/acschembio.9b00423
doi: 10.1021/acschembio.9b00423 pubmed: 31525024
Dickson EJ, Hille B (2019) Understanding phosphoinositides: rare, dynamic, and essential membrane phospholipids. Biochem J 476(1):1–23. https://doi.org/10.1042/BCJ20180022
doi: 10.1042/BCJ20180022 pubmed: 30617162 pmcid: 6342281
Grabon A, Bankaitis VA, McDermott MI (2019) The interface between phosphatidylinositol transfer protein function and phosphoinositide signaling in higher eukaryotes. J Lipid Res 60(2):242–268. https://doi.org/10.1194/jlr.R089730
doi: 10.1194/jlr.R089730 pubmed: 30504233
Kf de Campos M, Schaaf G (2017) The regulation of cell polarity by lipid transfer proteins of the SEC14 family. Curr Opin Plant Biol 40:158–168. https://doi.org/10.1016/j.pbi.2017.09.007
doi: 10.1016/j.pbi.2017.09.007 pubmed: 29017091
Hempel F, Stenzel I, Heilmann M, Krishnamoorthy P, Menzel W, Golbik R, Helm S, Dobritzsch D, Baginsky S, Lee J, Hoehenwarter W, Heilmann I (2017) MAPKs influence pollen tube growth by controlling the formation of phosphatidylinositol 4,5-bisphosphate in an apical plasma membrane domain. Plant Cell 29(12):3030–3050. https://doi.org/10.1105/tpc.17.00543
doi: 10.1105/tpc.17.00543 pubmed: 29167320 pmcid: 5757277
Tejos R, Sauer M, Vanneste S, Palacios-Gomez M, Li H, Heilmann M, van Wijk R, Vermeer JE, Heilmann I, Munnik T, Friml J (2014) Bipolar plasma membrane distribution of phosphoinositides and their requirement for auxin-mediated cell polarity and patterning in Arabidopsis. Plant Cell 26(5):2114–2128. https://doi.org/10.1105/tpc.114.126185
doi: 10.1105/tpc.114.126185 pubmed: 24876254 pmcid: 4079372
Kusano H, Testerink C, Vermeer JE, Tsuge T, Shimada H, Oka A, Munnik T, Aoyama T (2008) The Arabidopsis phosphatidylinositol phosphate 5-kinase PIP5K3 is a key regulator of root hair tip growth. Plant Cell 20(2):367–380. https://doi.org/10.1105/tpc.107.056119
doi: 10.1105/tpc.107.056119 pubmed: 18281506 pmcid: 2276443
Stenzel I, Ischebeck T, Konig S, Holubowska A, Sporysz M, Hause B, Heilmann I (2008) The type B phosphatidylinositol-4-phosphate 5-kinase 3 is essential for root hair formation in Arabidopsis thaliana. Plant Cell 20(1):124–141. https://doi.org/10.1105/tpc.107.052852
doi: 10.1105/tpc.107.052852 pubmed: 18178770 pmcid: 2254927
Lin F, Krishnamoorthy P, Schubert V, Hause G, Heilmann M, Heilmann I (2019) A dual role for cell plate-associated PI4Kbeta in endocytosis and phragmoplast dynamics during plant somatic cytokinesis. EMBO J 38(4). https://doi.org/10.15252/embj.2018100303
Stolz LE, Kuo WJ, Longchamps J, Sekhon MK, York JD (1998) INP51, a yeast inositol polyphosphate 5-phosphatase required for phosphatidylinositol 4,5-bisphosphate homeostasis and whose absence confers a cold-resistant phenotype. J Biol Chem 273(19):11852–11861. https://doi.org/10.1074/jbc.273.19.11852
doi: 10.1074/jbc.273.19.11852 pubmed: 9565610
Bonangelino CJ, Nau JJ, Duex JE, Brinkman M, Wurmser AE, Gary JD, Emr SD, Weisman LS (2002) Osmotic stress-induced increase of phosphatidylinositol 3,5-bisphosphate requires Vac14p, an activator of the lipid kinase Fab1p. J Cell Biol 156(6):1015–1028. https://doi.org/10.1083/jcb.200201002
doi: 10.1083/jcb.200201002 pubmed: 11889142 pmcid: 2173454
Duina AA, Miller ME, Keeney JB (2014) Budding yeast for budding geneticists: a primer on the Saccharomyces cerevisiae model system. Genetics 197(1):33–48. https://doi.org/10.1534/genetics.114.163188
doi: 10.1534/genetics.114.163188 pubmed: 24807111 pmcid: 4012490
Audhya A, Emr SD (2003) Regulation of PI4,5P2 synthesis by nuclear-cytoplasmic shuttling of the Mss4 lipid kinase. EMBO J 22(16):4223–4236. https://doi.org/10.1093/emboj/cdg397
doi: 10.1093/emboj/cdg397 pubmed: 12912920 pmcid: 175787
Stefan CJ, Audhya A, Emr SD (2002) The yeast synaptojanin-like proteins control the cellular distribution of phosphatidylinositol (4,5)-bisphosphate. Mol Biol Cell 13(2):542–557. https://doi.org/10.1091/mbc.01-10-0476
doi: 10.1091/mbc.01-10-0476 pubmed: 11854411 pmcid: 65648
Schu PV, Takegawa K, Fry MJ, Stack JH, Waterfield MD, Emr SD (1993) Phosphatidylinositol 3-kinase encoded by yeast VPS34 gene essential for protein sorting. Science 260(5104):88–91. https://doi.org/10.1126/science.8385367
doi: 10.1126/science.8385367 pubmed: 8385367
Schaaf G, Ortlund EA, Tyeryar KR, Mousley CJ, Ile KE, Garrett TA, Ren J, Woolls MJ, Raetz CR, Redinbo MR, Bankaitis VA (2008) Functional anatomy of phospholipid binding and regulation of phosphoinositide homeostasis by proteins of the sec14 superfamily. Mol Cell 29(2):191–206. https://doi.org/10.1016/j.molcel.2007.11.026
doi: 10.1016/j.molcel.2007.11.026 pubmed: 18243114 pmcid: 7808562
Phillips SE, Sha B, Topalof L, Xie Z, Alb JG, Klenchin VA, Swigart P, Cockcroft S, Martin TF, Luo M, Bankaitis VA (1999) Yeast Sec14p deficient in phosphatidylinositol transfer activity is functional in vivo. Mol Cell 4(2):187–197. https://doi.org/10.1016/s1097-2765(00)80366-4
doi: 10.1016/s1097-2765(00)80366-4 pubmed: 10488334
Munnik T (2013) Analysis of D3-,4-,5-phosphorylated phosphoinositides using HPLC. Methods Mol Biol 1009:17–24. https://doi.org/10.1007/978-1-62703-401-2_2
doi: 10.1007/978-1-62703-401-2_2 pubmed: 23681519
Scholl RL, May ST, Ware DH (2000) Seed and molecular resources for Arabidopsis. Plant Physiol 124(4):1477–1480. https://doi.org/10.1104/pp.124.4.1477
doi: 10.1104/pp.124.4.1477 pubmed: 11115863 pmcid: 1539300
Robinson JS, Klionsky DJ, Banta LM, Emr SD (1988) Protein sorting in Saccharomyces cerevisiae: isolation of mutants defective in the delivery and processing of multiple vacuolar hydrolases. Mol Cell Biol 8(11):4936–4948. https://doi.org/10.1128/mcb.8.11.4936
doi: 10.1128/mcb.8.11.4936 pubmed: 3062374 pmcid: 365587
Zonneveld BJM (1986) Cheap and simple yeast media. J Microbiol Meth 4(5–6):287–291. https://doi.org/10.1016/0167-7012(86)90040-0
doi: 10.1016/0167-7012(86)90040-0
Azevedo C, Saiardi A (2006) Extraction and analysis of soluble inositol polyphosphates from yeast. Nat Protoc 1(5):2416–2422. https://doi.org/10.1038/nprot.2006.337
doi: 10.1038/nprot.2006.337 pubmed: 17406485
Stevenson-Paulik J, Bastidas RJ, Chiou ST, Frye RA, York JD (2005) Generation of phytate-free seeds in Arabidopsis through disruption of inositol polyphosphate kinases. Proc Natl Acad Sci U S A 102(35):12612–12617. https://doi.org/10.1073/pnas.0504172102
doi: 10.1073/pnas.0504172102 pubmed: 16107538 pmcid: 1194928

Auteurs

Debabrata Laha (D)

Department of Biochemistry, Indian Institute of Science, Bangalore, India.

Marília Kamleitner (M)

Department of Plant Nutrition, Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms-University Bonn, Bonn, Germany.

Philipp Johnen (P)

Department of Plant Nutrition, Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms-University Bonn, Bonn, Germany.
BASF SE, Limburgerhof, Germany.

Gabriel Schaaf (G)

Department of Plant Nutrition, Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms-University Bonn, Bonn, Germany. gabriel.schaaf@uni-bonn.de.

Articles similaires

Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Arabidopsis Arabidopsis Proteins Osmotic Pressure Cytoplasm RNA, Messenger

The FGF/FGFR/c-Myc axis as a promising therapeutic target in multiple myeloma.

Arianna Giacomini, Sara Taranto, Giorgia Gazzaroli et al.
1.00
Humans Multiple Myeloma Receptors, Fibroblast Growth Factor Fibroblast Growth Factors Proto-Oncogene Proteins c-myc
Genome Size Genome, Plant Magnoliopsida Evolution, Molecular Arabidopsis

Classifications MeSH