Time-Lapse Imaging of Necroptosis and DAMP Release at Single-Cell Resolution.


Journal

Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969

Informations de publication

Date de publication:
2021
Historique:
entrez: 29 5 2021
pubmed: 30 5 2021
medline: 22 6 2021
Statut: ppublish

Résumé

Necroptosis is a regulated form of necrosis that depends on receptor-interacting protein kinase (RIPK)3 and mixed lineage kinase domain-like protein (MLKL). Necroptotic cells release a variety of cellular and nuclear factors, referred to as danger-associated molecular patterns (DAMPs). We recently developed a förster resonance energy transfer (FRET) biosensor, termed SMART (a sensor for MLKL activation based on FRET). SMART comprises a fragment of MLKL, and it monitors necroptosis, but not apoptosis or necrosis. We performed live-cell imaging for secretion activity (LCI-S) to observe the release of high-mobility group box 1 (HMGB1) from necroptotic cells at single-cell resolution. Moreover, we combined SMART and LCI-S imaging techniques and found two different modes of HMGB1 release from necroptotic cells. Thus, SMART and LCI-S are valuable tools for investigating intimate cross talk between necroptosis and DAMP release at single-cell resolution.

Identifiants

pubmed: 34050485
doi: 10.1007/978-1-0716-1258-3_29
doi:

Substances chimiques

Alarmins 0
HMGB1 Protein 0
HMGB1 protein, human 0
MLKL protein, human EC 2.7.-
Protein Kinases EC 2.7.-

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

353-363

Références

Weinlich R, Oberst A, Beere HM, Green DR (2017) Necroptosis in development, inflammation, and disease. Nat Rev Mol Cell Biol 18:127–136
doi: 10.1038/nrm.2016.149
Pasparakis M, Vandenabeele P (2015) Necroptosis and its role in inflammation. Nature 517:311–320
doi: 10.1038/nature14191
Kaczmarek A, Vandenabeele P, Krysko DV (2013) Necroptosis: the release of damage-associated molecular patterns and its physiological relevance. Immunity 38:209–223
doi: 10.1016/j.immuni.2013.02.003
Murai S, Yamaguchi Y, Shirasaki Y, Yamagishi M, Shindo R, Hildebrand JM, Miura R, Nakabayashi O, Totsuka M, Tomida T, Adachi-Akahane S, Uemura S, Silke J, Yagita H, Miura M, Nakano H (2018) A FRET biosensor for necroptosis uncovers two different modes of the release of DAMPs. Nat Commun 9:4457
doi: 10.1038/s41467-018-06985-6
Nakano H, Murai S, Yamaguchi Y, Shirasaki Y, Nakabayashi O, Yamazaki S (2019) Development of novel methods that monitor necroptosis and the release of DMAPs at the single-cell resolution. Cell Stress 3:66–69
doi: 10.15698/cst2019.02.177
Shirasaki Y, Yamagishi M, Suzuki N, Izawa K, Nakahara A, Mizuno J, Shoji S, Heike T, Harada Y, Nishikomori R, Ohara O (2014) Real-time single-cell imaging of protein secretion. Sci Rep 4:4736
doi: 10.1038/srep04736
Liu T, Yamaguchi Y, Shirasaki Y, Shikada K, Yamagishi M, Hoshino K, Kaisho T, Takemoto K, Suzuki T, Kuranaga E, Ohara O, Miura M (2014) Single-cell imaging of caspase-1 dynamics reveals an all-or-none inflammasome signaling response. Cell Rep 8:974–982
doi: 10.1016/j.celrep.2014.07.012
Vanden Berghe T, Grootjans S, Goossens V, Dondelinger Y, Krysko DV, Takahashi N, Vandenabeele P (2013) Determination of apoptotic and necrotic cell death in vitro and in vivo. Methods 61:117–129
doi: 10.1016/j.ymeth.2013.02.011
Kawakami K, Takeda H, Kawakami N, Kobayashi M, Matsuda N, Mishina M (2004) A transposon-mediated gene trap approach identifies developmentally regulated genes in zebrafish. Dev Cell 7:133–144
doi: 10.1016/j.devcel.2004.06.005
Fujii S, Nishikawa-Torikai S, Futatsugi Y, Toyooka Y, Yamane M, Ohtsuka S, Niwa H (2015) Nr0b1 is a negative regulator of Zscan4c in mouse embryonic stem cells. Sci Rep 5:9146
doi: 10.1038/srep09146
Wang W, Lin C, Lu D, Ning Z, Cox T, Melvin D, Wang X, Bradley A, Liu P (2008) Chromosomal transposition of PiggyBac in mouse embryonic stem cells. Proc Natl Acad Sci U S A 105:9290–9295
doi: 10.1073/pnas.0801017105
Safferthal C, Rohde K, Fulda S (2017) Therapeutic targeting of necroptosis by Smac mimetic bypasses apoptosis resistance in acute myeloid leukemia cells. Oncogene 36:1487–1502
doi: 10.1038/onc.2016.310
Takemura R, Takaki H, Okada S, Shime H, Akazawa T, Oshiumi H, Matsumoto M, Teshima T, Seya T (2015) PolyI:C-induced, TLR3/RIP3-dependent necroptosis backs up immune effector-mediated tumor elimination in vivo. Cancer Immunol Res 3:902–914
doi: 10.1158/2326-6066.CIR-14-0219
Shaw D, Yim M, Tsukuda J, Joly JC, Lin A, Snedecor B, Laird MW, Lang SE (2018) Development and characterization of an automated imaging workflow to generate clonally derived cell lines for therapeutic proteins. Biotechnol Prog 34:584–592
doi: 10.1002/btpr.2561

Auteurs

Shin Murai (S)

Department of Biochemistry, Toho University School of Medicine, Ota-ku, Tokyo, Japan.

Yoshitaka Shirasaki (Y)

Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.

Hiroyasu Nakano (H)

Department of Biochemistry, Toho University School of Medicine, Ota-ku, Tokyo, Japan. hiroyasu.nakano@med.toho-u.ac.jp.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH