Engineering of Extracellular Vesicles Based on Payload Changes for Tissue Regeneration.

Engineering Extracellular vesicle Medicine Mesenchymal stem cell Regeneration

Journal

Tissue engineering and regenerative medicine
ISSN: 2212-5469
Titre abrégé: Tissue Eng Regen Med
Pays: Korea (South)
ID NLM: 101699923

Informations de publication

Date de publication:
08 2021
Historique:
received: 23 03 2021
accepted: 19 04 2021
revised: 14 04 2021
pubmed: 30 5 2021
medline: 18 9 2021
entrez: 29 5 2021
Statut: ppublish

Résumé

In the field of tissue regeneration and tissue engineering, many years ago, various nano to macroscopic-sized materials have been used to reduce inflammation and restore damaged tissue. Whether it is safe to study the regeneration of all tissues based on the biological mechanisms of an organism composed of cells is still debated, and studies using extracellular vesicles derived from cells have become popular in the past decade. It has been reported that exosomes with a size of 100 nm or less, which plays an important role in cell-cell communication, contain various factors, such as proliferation, anti-inflammatory, and growth factors. In addition, the payload of exosomes varies depending on the parent cell and the recipient cell, and a technology to differentiate the selective payload must treat specific diseases. In this review, we examined the current trends in research using exosomes derived from cells or tissues and analyzed various research reports on factors that can affect tissue regeneration.

Identifiants

pubmed: 34050888
doi: 10.1007/s13770-021-00349-w
pii: 10.1007/s13770-021-00349-w
pmc: PMC8325730
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

485-497

Subventions

Organisme : Korea Health Industry Development Institute (KR)
ID : HI19C1334

Informations de copyright

© 2021. The Korean Tissue Engineering and Regenerative Medicine Society.

Références

Maas SLN, Breakefield XO, Weaver AM. Extracellular vesicles: unique intercellular delivery vehicles. Trends Cell Biol. 2017;27:172–88.
doi: 10.1016/j.tcb.2016.11.003
Danzer KM, Kranich LR, Ruf WP, Cagsal-Getkin O, Winslow AR, Zhu L, et al. Exosomal cell-to-cell transmission of alpha synuclein oligomers. Mol Neurodegener. 2012;7:42.
pubmed: 22920859 pmcid: 3483256 doi: 10.1186/1750-1326-7-42
Lázaro-Ibáñez E, Sanz-Garcia A, Visakorpi T, Escobedo-Lucea C, Siljander P, Ayuso-Sacido A, et al. Different gDNA content in the subpopulations of prostate cancer extracellular vesicles: apoptotic bodies, microvesicles, and exosomes. Prostate. 2014;74:1379–90.
pubmed: 25111183 pmcid: 4312964 doi: 10.1002/pros.22853
Thakur BK, Zhang H, Becker A, Matei I, Huang Y, Costa-Silva B, et al. Double-stranded DNA in exosomes: a novel biomarker in cancer detection. Cell Res. 2014;24:766–9.
pubmed: 24710597 pmcid: 4042169 doi: 10.1038/cr.2014.44
Jeppesen DK, Fenix AM, Franklin JL, Higginbotham JN, Zhang Q, Zimmerman LJ, et al. Reassessment of exosome composition. Cell. 2019;177:428–45.e18.
doi: 10.1016/j.cell.2019.02.029
Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science. 2020;367:eaau6977.
Jackson CE, Scruggs BS, Schaffer JE, Hanson PI. Effects of inhibiting VPS4 support a general role for ESCRTs in extracellular vesicle biogenesis. Biophys J. 2017;113:1342–52.
pubmed: 28629620 pmcid: 5607042 doi: 10.1016/j.bpj.2017.05.032
Colombo M, Moita C, van Niel G, Kowal J, Vigneron J, Benaroch P, et al. Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J Cell Sci. 2013;126:5553–65.
pubmed: 24105262
Joshi BS, de Beer MA, Giepmans BG, Zuhorn IS. Endocytosis of extracellular vesicles and release of their cargo from endosomes. ACS Nano. 2020;14:4444–55.
pubmed: 32282185 pmcid: 7199215 doi: 10.1021/acsnano.9b10033
Buratta S, Tancini B, Sagini K, Delo F, Chiaradia E, Urbanelli L, et al. Lysosomal exocytosis, exosome release and secretory autophagy: the autophagic- and endo-lysosomal systems go extracellular. Int J Mol Sci. 2020;21:2576.
pmcid: 7178086 doi: 10.3390/ijms21072576 pubmed: 7178086
Pisano S, Pierini I, Gu J, Gazze A, Francis LW, Gonzalez D, et al. Immune (cell) derived exosome mimetics (IDEM) as a treatment for ovarian cancer. Front Cell Dev Biol. 2020;8:553576.
pubmed: 33042993 pmcid: 7528637 doi: 10.3389/fcell.2020.553576
Zhou X, Xie F, Wang L, Zhang L, Zhang S, Fang M, et al. The function and clinical application of extracellular vesicles in innate immune regulation. Cell Mol Immunol. 2020;17:323–34.
pubmed: 32203193 pmcid: 7109106 doi: 10.1038/s41423-020-0391-1
Cho BS, Kim JO, Ha DH, Yi YW. Exosomes derived from human adipose tissue-derived mesenchymal stem cells alleviate atopic dermatitis. Stem Cell Res Ther. 2018;9:187.
pubmed: 29996938 pmcid: 6042362 doi: 10.1186/s13287-018-0939-5
Xu K, Zhang C, Du T, Gabriel ANA, Wang X, Li X, et al. Progress of exosomes in the diagnosis and treatment of lung cancer. Biomed Pharmacother. 2021;134:111111.
pubmed: 33352449 doi: 10.1016/j.biopha.2020.111111
Prikryl P, Satrapova V, Frydlova J, Hruskova Z, Zima T, Tesar V, et al. Mass spectrometry-based proteomic exploration of the small urinary extracellular vesicles in ANCA-associated vasculitis in comparison with total urine. J Proteomics. 2021;233:104067.
pubmed: 33307252 doi: 10.1016/j.jprot.2020.104067
Shenoy GN, Bhatta M, Loyall JL, Kelleher RJ Jr, Bernstein JM, Bankert RB. Exosomes represent an immune suppressive T cell checkpoint in human chronic inflammatory microenvironments. Immunol Invest. 2020;49:726–43.
pubmed: 32299258 doi: 10.1080/08820139.2020.1748047
Poggio M, Hu T, Pai CC, Chu B, Belair CD, Chang A, et al. Suppression of exosomal PD-L1 induces systemic anti-tumor immunity and memory. Cell. 2019;177:414–27.e13.
pubmed: 30951669 pmcid: 6499401 doi: 10.1016/j.cell.2019.02.016
Chen G, Huang AC, Zhang W, Zhang G, Wu M, Xu W, et al. Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature. 2018;560:382–6.
pubmed: 6095740 pmcid: 6095740 doi: 10.1038/s41586-018-0392-8
Wan Z, Gao X, Dong Y, Zhao Y, Chen X, Yang G, et al. Exosome-mediated cell-cell communication in tumor progression. Am J Cancer Res. 2018;8:1661–73.
pubmed: 30323961 pmcid: 6176174
Cho KHT, Xu B, Blenkiron C, Fraser M. Emerging roles of miRNAs in brain development and perinatal brain injury. Front Physiol. 2019;10:227.
pubmed: 30984006 pmcid: 6447777 doi: 10.3389/fphys.2019.00227
Yi X, Wei X, Lv H, An Y, Li L, Lu P, et al. Exosomes derived from microRNA-30b-3p-overexpressing mesenchymal stem cells protect against lipopolysaccharide-induced acute lung injury by inhibiting SAA3. Exp Cell Res. 2019;383:111454.
pubmed: 31170401 doi: 10.1016/j.yexcr.2019.05.035
Scott CC, Vacca F, Gruenberg J. Endosome maturation, transport and functions. Semin Cell Dev Biol. 2014;31:2–10.
pubmed: 24709024 doi: 10.1016/j.semcdb.2014.03.034
Xia L, Gu W, Zhang M, Chang YN, Chen K, Bai X, et al. Endocytosed nanoparticles hold endosomes and stimulate binucleated cells formation. Part Fibre Toxicol. 2016;13:63.
pubmed: 27899122 pmcid: 5127043 doi: 10.1186/s12989-016-0173-1
Woodman PG, Futter CE. Multivesicular bodies: co-ordinated progression to maturity. Curr Opin Cell Biol. 2008;20:408–14.
pubmed: 18502633 pmcid: 2577128 doi: 10.1016/j.ceb.2008.04.001
Trajkovic K, Hsu C, Chiantia S, Rajendran L, Wenzel D, Wieland F, et al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science. 2008;319:1244–7.
pubmed: 18309083 doi: 10.1126/science.1153124
Keerthikumar S, Gangoda L, Liem M, Fonseka P, Atukorala I, Ozcitti C, et al. Proteogenomic analysis reveals exosomes are more oncogenic than ectosomes. Oncotarget. 2015;6:15375–96.
pubmed: 25944692 pmcid: 4558158 doi: 10.18632/oncotarget.3801
Hurley JH, Odorizzi G. Get on the exosome bus with ALIX. Nat Cell Biol. 2012;14:654–5.
pubmed: 22743708 doi: 10.1038/ncb2530
Perez-Hernandez D, Gutiérrez-Vázquez C, Jorge I, López-Martín S, Ursa A, Sánchez-Madrid F, et al. The intracellular interactome of tetraspanin-enriched microdomains reveals their function as sorting machineries toward exosomes. J Biol Chem. 2013;288:11649–61.
pubmed: 23463506 pmcid: 3636856 doi: 10.1074/jbc.M112.445304
Moreno-Gonzalo O, Fernandez-Delgado I, Sanchez-Madrid F. Post-translational add-ons mark the path in exosomal protein sorting. Cell Mol Life Sci. 2018;75:1–19.
pubmed: 29080091 doi: 10.1007/s00018-017-2690-y
Kahlert C, Melo SA, Protopopov A, Tang J, Seth S, Koch M, et al. Identification of double-stranded genomic DNA spanning all chromosomes with mutated KRAS and p53 DNA in the serum exosomes of patients with pancreatic cancer. J Biol Chem. 2014;289:3869–75.
pubmed: 24398677 pmcid: 3924256 doi: 10.1074/jbc.C113.532267
Cai J, Wu G, Jose PA, Zeng C. Functional transferred DNA within extracellular vesicles. Exp Cell Res. 2016;349:179–83.
pubmed: 27751837 doi: 10.1016/j.yexcr.2016.10.012
Guescini M, Genedani S, Stocchi V, Agnati LF. Astrocytes and Glioblastoma cells release exosomes carrying mtDNA. J Neural Transm (Vienna). 2010;117:1–4.
doi: 10.1007/s00702-009-0288-8
Bolukbasi MF, Mizrak A, Ozdener GB, Madlener S, Ströbel T, Erkan EP, et al. miR-1289 and “zipcode”-like sequence enrich mRNAs in microvesicles. Mol Ther Nucleic Acids. 2012;1:e10.
pubmed: 23344721 pmcid: 3381601 doi: 10.1038/mtna.2011.2
Kulkarni B, Gondaliya P, Kirave P, Rawal R, Jain A, Garg R, et al. Exosome-mediated delivery of miR-30a sensitize cisplatin-resistant variant of oral squamous carcinoma cells via modulating Beclin1 and Bcl2. Oncotarget. 2020;11:1832–45.
pubmed: 32499869 pmcid: 7244014 doi: 10.18632/oncotarget.27557
Gidlöf O, Evander M, Rezeli M, Marko-Varga G, Laurell T, Erlinge D. Proteomic profiling of extracellular vesicles reveals additional diagnostic biomarkers for myocardial infarction compared to plasma alone. Sci Rep. 2019;9:8991.
pubmed: 31222168 pmcid: 6586849 doi: 10.1038/s41598-019-45473-9
Huang G, Lin G, Zhu Y, Duan W, Jin D. Emerging technologies for profiling extracellular vesicle heterogeneity. Lab Chip. 2020;20:2423–37.
pubmed: 32537618 doi: 10.1039/D0LC00431F
Wortzel I, Dror S, Kenific CM, Lyden D. Exosome-mediated metastasis: communication from a distance. Dev Cell. 2019;49:347–60.
pubmed: 31063754 doi: 10.1016/j.devcel.2019.04.011
Garcia-Romero N, Esteban-Rubio S, Rackov G, Carrión-Navarro J, Belda-Iniesta C, Ayuso-Sacido A. Extracellular vesicles compartment in liquid biopsies: clinical application. Mol Aspects Med. 2018;60:27–37.
pubmed: 29155161 doi: 10.1016/j.mam.2017.11.009
Delpech JC, Herron S, Botros MB, Ikezu T. Neuroimmune crosstalk through extracellular vesicles in health and disease. Trends Neurosci. 2019;42:361–72.
pubmed: 30926143 pmcid: 6486849 doi: 10.1016/j.tins.2019.02.007
Raimondo S, Giavaresi G, Lorico A, Alessandro R. Extracellular vesicles as biological shuttles for targeted therapies. Int J Mol Sci. 2019;20:1848.
pmcid: 6514983 doi: 10.3390/ijms20081848 pubmed: 6514983
Antes TJ, Middleton RC, Luther KM, Ijichi T, Peck KA, Liu WJ, et al. Targeting extracellular vesicles to injured tissue using membrane cloaking and surface display. J Nanobiotechnology. 2018;16:61.
pubmed: 30165851 pmcid: 6116387 doi: 10.1186/s12951-018-0388-4
Quiroz-Baez R, Hernández-Ortega K, Martínez-Martínez E. Insights into the proteomic profiling of extracellular vesicles for the identification of early biomarkers of neurodegeneration. Front Neurol. 2020;11:580030.
pubmed: 33362690 pmcid: 7759525 doi: 10.3389/fneur.2020.580030
Nelson BC, Maragh S, Ghiran IC, Jones JC, DeRose PC, Elsheikh E, et al. Measurement and standardization challenges for extracellular vesicle therapeutic delivery vectors. Nanomedicine (Lond). 2020;15:2149–70.
doi: 10.2217/nnm-2020-0206
Gonda A, Kabagwira J, Senthil GN, Wall NR. Internalization of exosomes through receptor-mediated endocytosis. Mol Cancer Res. 2019;17:337–47.
pubmed: 30487244 doi: 10.1158/1541-7786.MCR-18-0891
Mathieu M, Martin-Jaular L, Lavieu G, Thery C. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat Cell Biol. 2019;21:9–17.
pubmed: 30602770 doi: 10.1038/s41556-018-0250-9
Tintut Y, Demer LL. Exosomes: nanosized cellular messages. Circ Res. 2015;116:1281–3.
pubmed: 25858057 pmcid: 5127443 doi: 10.1161/CIRCRESAHA.115.306324
Tkach M, Théry C. Communication by extracellular vesicles: where we are and where we need to go. Cell. 2016;164:1226–32.
pubmed: 26967288 doi: 10.1016/j.cell.2016.01.043
Morrissey SM, Yan J. Exosomal PD-L1: roles in tumor progression and immunotherapy. Trends Cancer. 2020;6:550–8.
pubmed: 32610067 pmcid: 7330176 doi: 10.1016/j.trecan.2020.03.002
Lopez-Verrilli MA, Court FA. Exosomes: mediators of communication in eukaryotes. Biol Res. 2013;46:5–11.
pubmed: 23760408 doi: 10.4067/S0716-97602013000100001
Gutiérrez-Vázquez C, Villarroya-Beltri C, Mittelbrunn M, Sánchez-Madrid F. Transfer of extracellular vesicles during immune cell–cell interactions. Immunol Rev. 2013;251:125–42.
pubmed: 23278745 pmcid: 3740495 doi: 10.1111/imr.12013
Harding CV, Heuser JE, Stahl PD. Exosomes: looking back three decades and into the future. J Cell Biol. 2013;200:367–71.
pubmed: 23420870 pmcid: 3575527 doi: 10.1083/jcb.201212113
Bianco NR, Kim SH, Morelli AE, Robbins PD. Modulation of the immune response using dendritic cell-derived exosomes. Methods Mol Biol. 2007;380:443–55.
Zhou Y, Zhou W, Chen X, Wang Q, Li C, Chen Q, et al. Bone marrow mesenchymal stem cells-derived exosomes for penetrating and targeted chemotherapy of pancreatic cancer. Acta Pharm Sin B. 2020;10:1563–75.
pubmed: 32963950 doi: 10.1016/j.apsb.2019.11.013
Qin S, Dorschner RA, Masini I, Lavoie-Gagne O, Stahl PD, Costantini TW, et al. TBC1D3 regulates the payload and biological activity of extracellular vesicles that mediate tissue repair. FASEB J. 2019;33:6129–39.
pubmed: 30715917 pmcid: 6463925 doi: 10.1096/fj.201802388R
Beauvillain C, Ruiz S, Guiton R, Bout D, Dimier-Poisson I. A vaccine based on exosomes secreted by a dendritic cell line confers protection against T. gondii infection in syngeneic and allogeneic mice. Microbes Infect. 2007;9:1614–22.
pubmed: 17905628 doi: 10.1016/j.micinf.2007.07.002
Giri PK, Schorey JS. Exosomes derived from M. Bovis BCG infected macrophages activate antigen-specific CD4+ and CD8+ T cells in vitro and in vivo. PLoS One. 2008;3:e2461.
Keryer-Bibens C, Pioche-Durieu C, Villemant C, Souquère S, Nishi N, Hirashima M, et al. Exosomes released by EBV-infected nasopharyngeal carcinoma cells convey the viral latent membrane protein 1 and the immunomodulatory protein galectin 9. BMC Cancer. 2006;6:283.
pubmed: 17156439 pmcid: 1779799 doi: 10.1186/1471-2407-6-283
Zhou X, Brown BA, Siegel AP, El Masry MS, Zeng X, Song W, et al. Exosome-mediated crosstalk between keratinocytes and macrophages in cutaneous wound healing. ACS Nano. 2020;14:12732–48.
pubmed: 32931251 doi: 10.1021/acsnano.0c03064
Shin KO, Ha DH, Kim JO, Crumrine DA, Meyer JM, Wakefield JS, et al. Exosomes from human adipose tissue-derived mesenchymal stem cells promote epidermal barrier repair by inducing de novo synthesis of ceramides in atopic dermatitis. Cells. 2020;9:680.
pmcid: 7140723 doi: 10.3390/cells9030680 pubmed: 7140723
From the American Association of Neurological Surgeons, American Society of Neuroradiology, Cardiovascular Interventional Radiology Society of Europe, Canadian Interventional Radiology Association, Congress of Neurological Surgeons, European Society of Minimally Invasive Neurological Therapy, et al. Multisociety consensus quality improvement revised consensus statement for endovascular therapy of acute ischemic stroke. Int J Stroke. 2018;13:612–32.
Hashimoto H, Olson EN, Bassel-Duby R. Therapeutic approaches for cardiac regeneration and repair. Nat Rev Cardiol. 2018;15:585–600.
pubmed: 29872165 pmcid: 6241533 doi: 10.1038/s41569-018-0036-6
Bellin G, Gardin C, Ferroni L, Chachques JC, Rogante M, Mitrečić D, et al. Exosome in cardiovascular diseases: a complex world full of hope. Cells. 2019;8:166.
pmcid: 6406975 doi: 10.3390/cells8020166 pubmed: 6406975
Lin Y, Anderson JD, Rahnama LMA, Gu SV, Knowlton AA. Exosomes in disease and regeneration: biological functions, diagnostics, and beneficial effects. Am J Physiol Heart Circ Physiol. 2020;319:H1162–80.
pubmed: 32986962 doi: 10.1152/ajpheart.00075.2020
Gallet R, Dawkins J, Valle J, Simsolo E, de Couto G, Middleton R, et al. Exosomes secreted by cardiosphere-derived cells reduce scarring, attenuate adverse remodelling, and improve function in acute and chronic porcine myocardial infarction. Eur Heart J. 2017;38:201–11.
pubmed: 28158410
Baruah J, Wary KK. Exosomes in the regulation of vascular endothelial cell regeneration. Front Cell Dev Biol. 2020;7:353.
pubmed: 31998716 pmcid: 6962177 doi: 10.3389/fcell.2019.00353
Barile L, Lionetti V, Cervio E, Matteucci M, Gherghiceanu M, Popescu LM, et al. Extracellular vesicles from human cardiac progenitor cells inhibit cardiomyocyte apoptosis and improve cardiac function after myocardial infarction. Cardiovasc Res. 2014;103:530–41.
pubmed: 25016614 doi: 10.1093/cvr/cvu167
Ibrahim AGE, Cheng K, Marban E. Exosomes as critical agents of cardiac regeneration triggered by cell therapy. Stem Cell Rep. 2014;2:606–19.
doi: 10.1016/j.stemcr.2014.04.006
Qu Y, Zhang Q, Cai X, Li F, Ma Z, Xu M, et al. Exosomes derived from miR-181-5p-modified adipose-derived mesenchymal stem cells prevent liver fibrosis via autophagy activation. J Cell Mol Med. 2017;21:2491–502.
pubmed: 28382720 pmcid: 5618698 doi: 10.1111/jcmm.13170
Yang J, Zhang X, Chen X, Wang L, Yang G. Exosome mediated delivery of miR-124 promotes neurogenesis after ischemia. Mol Ther Nucleic Acids. 2017;7:278–87.
pubmed: 28624203 pmcid: 5415550 doi: 10.1016/j.omtn.2017.04.010
Dominguez JM, Dominguez JH, Xie D, Kelly K. Human extracellular microvesicles from renal tubules reverse kidney ischemia-reperfusion injury in rats. PLoS One. 2018;13:e0202550.
pubmed: 30148844 pmcid: 6110463 doi: 10.1371/journal.pone.0202550
Webb RL, Kaiser EE, Jurgielewicz BJ, Spellicy S, Scoville SL, Thompson TA, et al. Human neural stem cell extracellular vesicles improve recovery in a porcine model of ischemic stroke. Stroke. 2018;49:1248–56.
pubmed: 29650593 pmcid: 5916046 doi: 10.1161/STROKEAHA.117.020353
Webb RL, Kaiser EE, Scoville SL, Thompson TA, Fatima S, Pandya C, et al. Human neural stem cell extracellular vesicles improve tissue and functional recovery in the murine thromboembolic stroke model. Transl Stroke Res. 2018;9:530–9.
pubmed: 29285679 doi: 10.1007/s12975-017-0599-2
Caplan AI, Dennis JE. Mesenchymal stem cells as trophic mediators. J Cell Biochem. 2006;98:1076–84.
pubmed: 16619257 doi: 10.1002/jcb.20886
Ferreira JR, Teixeira GQ, Santos SG, Barbosa MA, Almeida-Porada G, Goncalves RM. Mesenchymal stromal cell secretome: influencing therapeutic potential by cellular pre-conditioning. Front Immunol. 2018;9:2837.
pubmed: 30564236 pmcid: 6288292 doi: 10.3389/fimmu.2018.02837
Simonson OE, Mougiakakos D, Heldring N, Bassi G, Johansson HJ, Dalen M, et al. In vivo effects of mesenchymal stromal cells in two patients with severe acute respiratory distress syndrome. Stem Cells Transl Med. 2015;4:1199–213.
pubmed: 26285659 pmcid: 4572899 doi: 10.5966/sctm.2015-0021
Liu C, Su C. Design strategies and application progress of therapeutic exosomes. Theranostics. 2019;9:1015–28.
pubmed: 30867813 pmcid: 6401399 doi: 10.7150/thno.30853
Preciado S, Muntion S, Sanchez-Guijo F. Improving hematopoietic engraftment: Potential role of mesenchymal stromal cell-derived extracellular vesicles. Stem Cells. 2021;39:26–32.
pubmed: 32985054
Park DJ, Yun WS, Kim WC, Park JE, Lee SH, Ha S, et al. Improvement of stem cell-derived exosome release efficiency by surface-modified nanoparticles. J Nanobiotechnology. 2020;18:178.
pubmed: 33287848 pmcid: 7720507 doi: 10.1186/s12951-020-00739-7
Ambattu LA, Ramesan S, Dekiwadia C, Hanssen E, Li H, Yeo LY. High frequency acoustic cell stimulation promotes exosome generation regulated by a calcium-dependent mechanism. Commun Biol. 2020;3:553.
pubmed: 33020585 pmcid: 7536404 doi: 10.1038/s42003-020-01277-6
Messenger SW, Woo SS, Sun Z, Martin TFJ. A Ca2+-stimulated exosome release pathway in cancer cells is regulated by Munc13-4. J Cell Biol. 2018;217:2877–90.
pubmed: 29930202 pmcid: 6080937 doi: 10.1083/jcb.201710132
Savina A, Furlán M, Vidal M, Colombo MI. Exosome release is regulated by a calcium-dependent mechanism in K562 cells. J Biol Chem. 2003;278:20083–90.
pubmed: 12639953 doi: 10.1074/jbc.M301642200
Shyong YJ, Chang KC, Lin FH. Calcium phosphate particles stimulate exosome secretion from phagocytes for the enhancement of drug delivery. Colloids Surf B Biointerfaces. 2018;171:391–7.
pubmed: 30064087 doi: 10.1016/j.colsurfb.2018.07.037
Iliev D, Strandskog G, Nepal A, Aspar A, Olsen R, Jørgensen J, et al. Stimulation of exosome release by extracellular DNA is conserved across multiple cell types. FEBS J. 2018;285:3114–33.
pubmed: 29953723 doi: 10.1111/febs.14601
Emam SE, Ando H, Abu Lila AS, Shimizu T, Ukawa M, Okuhira K, et al. A novel strategy to increase the yield of exosomes (extracellular vesicles) for an expansion of basic research. Biol Pharm Bull. 2018;41:733–42.
pubmed: 29709910 doi: 10.1248/bpb.b17-00919
Novo D, Heath N, Mitchell L, Caligiuri G, MacFarlane A, Reijmer D, et al. Mutant p53s generate pro-invasive niches by influencing exosome podocalyxin levels. Nat Commun. 2018;9:5069.
pubmed: 30498210 pmcid: 6265295 doi: 10.1038/s41467-018-07339-y
Parolini I, Federici C, Raggi C, Lugini L, Palleschi S, De Milito A, et al. Microenvironmental pH is a key factor for exosome traffic in tumor cells. J Biol Chem. 2009;284:34211–22.
pubmed: 19801663 pmcid: 2797191 doi: 10.1074/jbc.M109.041152
Wang Z, Maruyama K, Sakisaka Y, Suzuki S, Tada H, Suto M, et al. Cyclic stretch force induces periodontal ligament cells to secrete exosomes that suppress IL-1 beta production through the inhibition of the NF-kappa B signaling pathway in macrophages. Front Immunol. 2019;10:1310.
pubmed: 31281309 pmcid: 6595474 doi: 10.3389/fimmu.2019.01310
King HW, Michael MZ, Gleadle JM. Hypoxic enhancement of exosome release by breast cancer cells. BMC Cancer. 2012;12:421.
pubmed: 22998595 pmcid: 3488584 doi: 10.1186/1471-2407-12-421
Sinha S, Hoshino D, Hong NH, Kirkbride KC, Grega-Larson NE, Seiki M, et al. Cortactin promotes exosome secretion by controlling branched actin dynamics. J Cell Biol. 2016;214:197–213.
pubmed: 27402952 pmcid: 4949450 doi: 10.1083/jcb.201601025
Böker KO, Lemus-Diaz N, Rinaldi Ferreira R, Schiller L, Schneider S, Gruber J. The impact of the CD9 tetraspanin on lentivirus infectivity and exosome secretion. Mol Ther. 2018;26:634–47.
pubmed: 29221804 doi: 10.1016/j.ymthe.2017.11.008
Jabbari N, Nawaz M, Rezaie J. Ionizing radiation increases the activity of exosomal secretory pathway in MCF-7 human breast cancer cells: a possible way to communicate resistance against radiotherapy. Int J Mol Sci. 2019;20:3649.
pmcid: 6696324 doi: 10.3390/ijms20153649 pubmed: 6696324
Yang Z, Shi J, Xie J, Wang Y, Sun J, Liu T, et al. Large-scale generation of functional mRNA-encapsulating exosomes via cellular nanoporation. Nat Biomed Eng. 2020;4:69–83.
pubmed: 31844155 doi: 10.1038/s41551-019-0485-1
Patel DB, Santoro M, Born LJ, Fisher JP, Jay SM. Towards rationally designed biomanufacturing of therapeutic extracellular vesicles: impact of the bioproduction microenvironment. Biotechnol Adv. 2018;36:2051–9.
pubmed: 30218694 pmcid: 6250573 doi: 10.1016/j.biotechadv.2018.09.001
Watson DC, Bayik D, Srivatsan A, Bergamaschi C, Valentin A, Niu G, et al. Efficient production and enhanced tumor delivery of engineered extracellular vesicles. Biomaterials. 2016;105:195–205.
pubmed: 27522254 pmcid: 7156278 doi: 10.1016/j.biomaterials.2016.07.003
Eirin A, Riester SM, Zhu XY, Tang H, Evans JM, O’Brien D, et al. MicroRNA and mRNA cargo of extracellular vesicles from porcine adipose tissue-derived mesenchymal stem cells. Gene. 2014;551:55–64.
pubmed: 25158130 pmcid: 4174680 doi: 10.1016/j.gene.2014.08.041
De Rubis G, Rajeev Krishnan S, Bebawy M. Liquid biopsies in cancer diagnosis, monitoring, and prognosis. Trends Pharmacol Sci. 2019;40:172–86.
pubmed: 30736982 doi: 10.1016/j.tips.2019.01.006
Xiao YW, Zhong JN, Zhong BY, Huang JY, Jiang LX, Jiang Y, et al. Exosomes as potential sources of biomarkers in colorectal cancer. Cancer Lett. 2020;476:13–22.
pubmed: 32044357 doi: 10.1016/j.canlet.2020.01.033
He C, Zheng S, Luo Y, Wang B. Exosome theranostics: biology and translational medicine. Theranostics. 2018;8:237–55.
pubmed: 29290805 pmcid: 5743472 doi: 10.7150/thno.21945
Mege D, Panicot-Dubois L, Ouaissi M, Robert S, Sielezneff I, Sastre B, et al. The origin and concentration of circulating microparticles differ according to cancer type and evolution: a prospective single-center study. Int J Cancer. 2016;138:939–48.
pubmed: 26341361 doi: 10.1002/ijc.29837
Santoni G, Morelli MB, Amantini C, Battelli N. Urinary markers in bladder cancer: an update. Front Oncol. 2018;8:362.
pubmed: 30245975 pmcid: 6137202 doi: 10.3389/fonc.2018.00362
Wang Q, Yu G, He H, Zheng Z, Li X, Lin R, et al. Differential expression of circular RNAs in bone marrow-derived exosomes from essential thrombocythemia patients. Cell Biol Int. 2021;45:869–81.
pubmed: 33325145 doi: 10.1002/cbin.11534
Zhang P, Liang T, Chen Y, Wang X, Wu TL, Xie ZX, et al. Circulating exosomal miRNAs as novel biomarkers for stable coronary artery disease. Biomed Res Int. 2020;2020:3593962.
pubmed: 33381550 pmcid: 7748912
Zhang LY, Yang X, Wang SB, Chen H, Pan HY, Hu ZM. Membrane derived vesicles as biomimetic carriers for targeted drug delivery system. Curr Top Med Chem. 2020;20:2472–92.
pubmed: 32962615 doi: 10.2174/1568026620666200922113054
Saleh AF, Lazaro-Ibanez E, Forsgard MA, Shatnyeva O, Osteikoetxea X, Karlsson F, et al. Extracellular vesicles induce minimal hepatotoxicity and immunogenicity. Nanoscale. 2019;11:6990–7001.
pubmed: 30916672 doi: 10.1039/C8NR08720B
Zhu X, Badawi M, Pomeroy S, Sutaria DS, Xie Z, Baek A, et al. Comprehensive toxicity and immunogenicity studies reveal minimal effects in mice following sustained dosing of extracellular vesicles derived from HEK293T cells. J Extracell Vesicles. 2017;6:1324730.
pubmed: 28717420 pmcid: 5505007 doi: 10.1080/20013078.2017.1324730
Popowski K, Lutz H, Hu S, George A, Dinh PU, Cheng K. Exosome therapeutics for lung regenerative medicine. J Extracell Vesicles. 2020;9:1785161.
pubmed: 32944172 pmcid: 7480570 doi: 10.1080/20013078.2020.1785161
Lee JR, Park BW, Kim J, Choo YW, Kim HY, Yoon JK, et al. Nanovesicles derived from iron oxide nanoparticles-incorporated mesenchymal stem cells for cardiac repair. Sci Adv. 2020;6:eaaz0952.
Shi X, Cheng Q, Hou T, Han M, Smbatyan G, Lang JE, et al. Genetically engineered cell-derived nanoparticles for targeted breast cancer immunotherapy. Mol Ther. 2020;28:536–47.
pubmed: 31843452 doi: 10.1016/j.ymthe.2019.11.020
Ting PJ, Lin CH, Huang FL, Lin MC, Hwang KP, Huang YC, et al. Epidemiology of acute otitis media among young children: a multiple database study in Taiwan. J Microbiol Immunol Infect. 2012;45:453–8.
pubmed: 22823943 doi: 10.1016/j.jmii.2012.06.007
Si Y, Kim S, Zhang E, Tang Y, Jaskula-Sztul R, Markert JM, et al. Targeted exosomes for drug delivery: biomanufacturing, surface tagging, and validation. Biotechnol J. 2020;15:e1900163.
pubmed: 31595685 doi: 10.1002/biot.201900163
Costafreda MI, Abbasi A, Lu H, Kaplan G. Exosome mimicry by a HAVCR1-NPC1 pathway of endosomal fusion mediates hepatitis A virus infection. Nat Microbiol. 2020;5:1096–106.
pubmed: 32541946 pmcid: 7483988 doi: 10.1038/s41564-020-0740-y
Ye Y, Zhang X, Xie F, Xu B, Xie P, Yang T, et al. An engineered exosome for delivering sgRNA:Cas9 ribonucleoprotein complex and genome editing in recipient cells. Biomater Sci. 2020;8:2966–76.
pubmed: 32342086 doi: 10.1039/D0BM00427H
Kim D, Le QV, Wu Y, Park J, Oh YK. Nanovesicle-mediated delivery systems for CRISPR/Cas genome editing. Pharmaceutics. 2020;12:1233.
pmcid: 7766488 doi: 10.3390/pharmaceutics12121233 pubmed: 7766488
Shao J, Zaro J, Shen Y. Advances in exosome-based drug delivery and tumor targeting: from tissue distribution to intracellular fate. Int J Nanomedicine. 2020;15:9355–71.
pubmed: 33262592 pmcid: 7700079 doi: 10.2147/IJN.S281890
Wang J, Li W, Zhang L, Ban L, Chen P, Du W, et al. Chemically edited exosomes with dual ligand purified by microfluidic device for active targeted drug delivery to tumor cells. ACS Appl Mater Interfaces. 2017;9:27441–52.
pubmed: 28762264 doi: 10.1021/acsami.7b06464
Burgio S, Noori L, Marino Gammazza A, Campanella C, Logozzi M, Fais S, et al. Extracellular vesicles-based drug delivery systems: a new challenge and the exemplum of malignant pleural mesothelioma. Int J Mol Sci. 2020;21:5432.
pmcid: 7432055 doi: 10.3390/ijms21155432 pubmed: 7432055
Gudbergsson JM. Extracellular vesicles for targeted drug delivery: triumphs and challenges. Future Med Chem. 2020;12:1285–7.
pubmed: 32515217 doi: 10.4155/fmc-2020-0117
Luan X, Sansanaphongpricha K, Myers I, Chen H, Yuan H, Sun D. Engineering exosomes as refined biological nanoplatforms for drug delivery. Acta Pharmacol Sin. 2017;38:754–63.
pubmed: 28392567 pmcid: 5520184 doi: 10.1038/aps.2017.12
Patil SM, Sawant SS, Kunda NK. Exosomes as drug delivery systems: a brief overview and progress update. Eur J Pharm Biopharm. 2020;154:259–69.
pubmed: 32717385 doi: 10.1016/j.ejpb.2020.07.026

Auteurs

Dong Jun Park (DJ)

Department of Surgery, University of California San Diego, 212 Dickinson Street, MC 8236, San Diego, CA, 92103, USA.
Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju, Gangwon-do, 26426, South Korea.
Research Institute of Hearing Enhancement, Yonsei University Wonju College of Medicine, Wonju, Gangwon-do, 26426, South Korea.

Young Joon Seo (YJ)

Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju, Gangwon-do, 26426, South Korea. okas2000@hanmail.net.
Research Institute of Hearing Enhancement, Yonsei University Wonju College of Medicine, Wonju, Gangwon-do, 26426, South Korea. okas2000@hanmail.net.
School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, WA, Australia. okas2000@hanmail.net.

Articles similaires

Organoids Humans Tissue Engineering Coculture Techniques Regenerative Medicine
Humans RNA, Circular Exosomes Cell Proliferation Epithelial-Mesenchymal Transition
Humans Formins Phosphorylation Exosomes Jurkat Cells
Organoids Animals Kidney Mice Humans

Classifications MeSH