Malignant plasmacytes in bone marrow detected by flow cytometry as a predictor for the risk stratification system of multiple myeloma.

flow cytometry malignant plasma cells multiple myeloma risk stratification system

Journal

Cytometry. Part B, Clinical cytometry
ISSN: 1552-4957
Titre abrégé: Cytometry B Clin Cytom
Pays: United States
ID NLM: 101235690

Informations de publication

Date de publication:
01 2022
Historique:
revised: 29 04 2021
received: 09 12 2020
accepted: 14 05 2021
pubmed: 1 6 2021
medline: 17 3 2022
entrez: 31 5 2021
Statut: ppublish

Résumé

Multiple myeloma (MM) is a clonal disorder characterized by the proliferation of plasma cells and their accumulation within the bone marrow (BM). The flow cytometric analysis is an essential method for the hematological diseases because of high sensitivity. This study evaluates the indication role of malignant plasmacytes (PCs) in BM detected by flow cytometry for the risk stratification of MM. Whole BM samples from 92 newly diagnosed MM patients were included in the study. We collected 10 In this study, patients were stratified according to different baseline characteristics and the median ratio of the malignant PCs were compared. The significant statistical differences (p < 0.05) were: Hb < 100 g/L versus ≥100 g/L; β2-microglobulin <3.5 mg/dL versus 3.5-5.5 mg/dL versus >5.5 mg/dL; LDH > 250 U/L versus LDH 250 U/L; ISS I versus ISS II versus ISS III; R-ISS I versus II versus III. The detailed data are showed in Table 2. The significant correlations were observed between the malignant PCs in BM and (Figure 1): plasma cell of biopsy, hemoglobin, β2-microglobulin, lactate dehydrogenase (LDH), creatinine. "Double hit" or "triple hit" are defined as containing any two or three of the high risk cytogenetic abnormalities (t(4;14), t(14;16), t(14;20); del17q; TP53 mutation; 1q21 gain) by mSMAR. "Double or triple hit" had independently unfavorable significance for overall survival. As expected, the malignant PCs of "double or triple hit" group is significantly higher than the group B (one high risk genetic factor) and the group A (normal cytogenetic) (p < 0.0001 and p < 0.019). Multiparametric flow cytometry is a highly sensitive method to identify and quantify malignant PCs. And the ratio of malignant PCs detected by MFC showed strongly correlation with the severity of the pathology of MM. Malignant PCs in BM detected by flow cytometry could be regarded as a predictor for the risk stratification system of MM. Thus, it should be considered applying in the routine evaluation of MM at diagnosis and after therapy.

Sections du résumé

BACKGROUND
Multiple myeloma (MM) is a clonal disorder characterized by the proliferation of plasma cells and their accumulation within the bone marrow (BM). The flow cytometric analysis is an essential method for the hematological diseases because of high sensitivity.
AIMS
This study evaluates the indication role of malignant plasmacytes (PCs) in BM detected by flow cytometry for the risk stratification of MM.
METHODS
Whole BM samples from 92 newly diagnosed MM patients were included in the study. We collected 10
RESULTS
In this study, patients were stratified according to different baseline characteristics and the median ratio of the malignant PCs were compared. The significant statistical differences (p < 0.05) were: Hb < 100 g/L versus ≥100 g/L; β2-microglobulin <3.5 mg/dL versus 3.5-5.5 mg/dL versus >5.5 mg/dL; LDH > 250 U/L versus LDH 250 U/L; ISS I versus ISS II versus ISS III; R-ISS I versus II versus III. The detailed data are showed in Table 2. The significant correlations were observed between the malignant PCs in BM and (Figure 1): plasma cell of biopsy, hemoglobin, β2-microglobulin, lactate dehydrogenase (LDH), creatinine. "Double hit" or "triple hit" are defined as containing any two or three of the high risk cytogenetic abnormalities (t(4;14), t(14;16), t(14;20); del17q; TP53 mutation; 1q21 gain) by mSMAR. "Double or triple hit" had independently unfavorable significance for overall survival. As expected, the malignant PCs of "double or triple hit" group is significantly higher than the group B (one high risk genetic factor) and the group A (normal cytogenetic) (p < 0.0001 and p < 0.019).
CONCLUSION
Multiparametric flow cytometry is a highly sensitive method to identify and quantify malignant PCs. And the ratio of malignant PCs detected by MFC showed strongly correlation with the severity of the pathology of MM. Malignant PCs in BM detected by flow cytometry could be regarded as a predictor for the risk stratification system of MM. Thus, it should be considered applying in the routine evaluation of MM at diagnosis and after therapy.

Identifiants

pubmed: 34057806
doi: 10.1002/cyto.b.22024
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

44-49

Subventions

Organisme : National Natural Science Foundation of China Youth Project
ID : 81900131
Organisme : Tianjin Education Commission Research Project
ID : 2018KJ043
Organisme : Tianjin Education Commission Research Project
ID : 2018KJ045
Organisme : Tianjin Municipal Natural Science Foundation
ID : 18JCQNJC80400
Organisme : Tianjin Science and Technology Planning Project
ID : 20YFZCSY00060

Informations de copyright

© 2021 International Clinical Cytometry Society.

Références

Alaterre, E., Raimbault, S., Garcia, J.-M., Rème, T., Requirand, G., Klein, B., & Moreaux, J. (2018). Automated and simplified identification of normal and abnormal plasma cells in multiple myeloma by flow cytometry. Cytometry Part B, Clinical Cytometry, 94(3), 484-492.
Baysal, M., Demirci, U., Umit, E., Kirkizlar, H. O., Atli, E. I., Gurkan, H., Gulsaran, S. K., Bas, V., Mail, C., & Demir, A. M. (2020). Concepts of double hit and triple hit disease in multiple myeloma, entity and prognostic significance. Scientific Reports, 10(1), 5991.
Byun, J. M., Shin, D.-Y., Hong, J., Kim, I., Kim, H. K., Lee, D. S., Koh, Y., & Yoon, S.-S. (2018). Distinct predictive impact of FISH abnormality in proteasome inhibitors and immunomodulatory agents response: Redefining high-risk multiple myeloma in Asian patients. Cancer Medicine, 7(3), 831-841.
Davies, F. E., Rawstron, A. C., Owen, R. G., & Morgan, G. J. (2002). Minimal residual disease monitoring in multiple myeloma. Best Practice & Research Clinical Haematology, 15(1), 197-222.
Draxler, D. F., Wutzlhofer, L. M., Slavka, G., Hübl, W., Ludwig, H., Schreder, M., Reynolds, J., & Willheim, M. (2019). Flow cytometric evaluation of traditional and novel surface markers for the diagnosis of plasma cell dyscrasias. Indian Journal of Hematology & Blood Transfusion, 35(4), 673-682.
Ferlay, J., Soerjomataram, I., Dikshit, R., Eser, S., Mathers, C., Rebelo, M., Parkin, D. M., Forman, D., & Bray, F. (2015). Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. International Journal of Cancer, 136(5), E359-E386.
Flores-Montero, J., de Tute, R., Paiva, B., Perez, J. J., Böttcher, S., Wind, H., Sanoja, L., Puig, N., Lecrevisse, Q., Vidriales, M. B., van Dongen, J. J. M., & Orfao, A. (2016). Immunophenotype of normal vs. myeloma plasma cells: Toward antibody panel specifications for MRD detection in multiple myeloma. Cytometry Part B, Clinical Cytometry, 90(1), 61-72.
Flores-Montero, J., Sanoja-Flores, L., Paiva, B., Puig, N., Garcia-Sanchez, O., Bottcher, S., van der Velden, V. H. J., Perez-Moran, J. J., Vidriales, M. B., Garcia-Sanz, R., Jimenez, C., Gonzalez, M., Martinez-Lopez, J., Corral-Mateos, A., Grigore, G. E., Fluxa, R., Pontes, R., Caetano, J., Sedek, L., … Orfao, A. (2017). Next generation flow for highly sensitive and standardized detection of minimal residual disease in multiple myeloma. Leukemia, 31(10), 2094-2103.
Galtseva, I. V., Davydova, Y. O., Kapranov, N. M., Julhakyan, H. L., & Mendeleeva, L. P. (2018). Minimal residual disease in multiple myeloma: Benefits of flow cytometry. International Journal of Laboratory Hematology, 40(1), 12-20.
Glavey, S. V., & Ghobrial, I. M. (2015). American Society of Hematology Annual Meeting 2014: Highlights in multiple myeloma. Expert Review of Hematology, 8(3), 273-275.
Kobayashi, S., Hyo, R., Amitani, Y., Tanaka, M., Hashimoto, C., Sakai, R., Tamura, T., Motomura, S., & Maruta, A. (2006). Four-color flow cytometric analysis of myeloma plasma cells. American Journal of Clinical Pathology, 126(6), 908-915.
Mikhael, J. R., Dingli, D., Roy, V., Reeder, C. B., Buadi, F. K., Hayman, S. R., Dispenzieri, A., Fonseca, R., Sher, T., Kyle, R. A., Lin, Y., Russell, S. J., Kumar, S., Bergsagel, P. L., Zeldenrust, S. R., Leung, N., Drake, M. T., Kapoor, P., Ansell, S. M., … Lacy, M. Q. (2013). Management of newly diagnosed symptomatic multiple myeloma: Updated Mayo stratification of myeloma and risk-adapted therapy (mSMART) consensus guidelines 2013. Mayo Clinic Proceedings, 88(4), 360-376.
Nooka, A. K., Kastritis, E., Dimopoulos, M. A., & Lonial, S. (2015). Treatment options for relapsed and refractory multiple myeloma. Blood, 125(20), 3085-3099.
Paiva, B., Almeida, J., Pérez-Andrés, M., Mateo, G., López, A., Rasillo, A., Vídriales, M.-B., López-Berges, M.-C., Miguel, J. F. S., & Orfao, A. (2010). Utility of flow cytometry immunophenotyping in multiple myeloma and other clonal plasma cell-related disorders. Cytometry Part B, Clinical Cytometry, 78(4), 239-252.
Paiva, B., Vídriales, M. B., Rosiñol, L., Martínez-López, J., Mateos, M. V., Ocio, E. M., Montalbán, M. Á., Cordón, L., Gutiérrez, N. C., Corchete, L., Oriol, A., Terol, M. J., Echeveste, M. A., De Paz, R., De Arriba, F., Palomera, L., de la Rubia, J., Díaz-Mediavilla, J., Granell, M., … San Miguel, J. F. (2013). A multiparameter flow cytometry immunophenotypic algorithm for the identification of newly diagnosed symptomatic myeloma with an MGUS-like signature and long-term disease control. Leukemia, 27(10), 2056-2061.
Rajkumar, S. V. (2018). Multiple myeloma: 2018 update on diagnosis, risk-stratification, and management. American Journal of Hematology, 93(8), 981-1114.
Rajkumar, S. V., Dimopoulos, M. A., Palumbo, A., Blade, J., Merlini, G., Mateos, M.-V., Kumar, S., Hillengass, J., Kastritis, E., Richardson, P., Landgren, O., Paiva, B., Dispenzieri, A., Weiss, B., Leleu, X., Zweegman, S., Lonial, S., Rosinol, L., Zamagni, E., … JFS, M. (2014). International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. The Lancet Oncology, 15(12), e538-e548.
Rasche, L., Alapat, D., Kumar, M., Gershner, G., McDonald, J., Wardell, C. P., Samant, R., Van Hemert, R., Epstein, J., Williams, A. F., Thanendrarajan, S., Schinke, C., Bauer, M., Ashby, C., Tytarenko, R. G., van Rhee, F., Walker, B. A., Zangari, M., Barlogie, B., … Weinhold, N. (2019). Combination of flow cytometry and functional imaging for monitoring of residual disease in myeloma. Leukemia, 33(7), 1713-1722.
Rawstron, A. C., Orfao, A., Beksac, M., Bezdickova, L., Brooimans, R. A., Bumbea, H., Dalva, K., Fuhler, G., Gratama, J., Hose, D., Kovarova, L., Lioznov, M., Mateo, G., Morilla, R., Mylin, A. K., Omedé, P., Pellat-Deceunynck, C., Perez Andres, M., Petrucci, M., … Johnsen, H. E. (2008). Report of the European Myeloma Network on multiparametric flow cytometry in multiple myeloma and related disorders. Haematologica, 93(3), 431-438.
Roshal, M. (2018). Minimal residual disease detection by flow cytometry in multiple myeloma: Why and how? Seminars in Hematology, 55(1), 4-12.
Tarín, F., López-Castaño, F., García-Hernández, C., Beneit, P., Sarmiento, H., Manresa, P., Alda, O., Villarrubia, B., Blanes, M., Bernabéu, J., Amorós, C., Sánchez-Sánchez, S., Fernández-Miñano, C., De Paz, F., Verdú-Belmar, J., Marco, P., & Matutes, E. (2019). Multiparameter flow cytometry identification of neoplastic subclones: A new biomarker in monoclonal gammopathy of undetermined significance and multiple myeloma. Acta Haematologica, 141(1), 1-6.
Waldschmidt, J. M., Anand, P., Knoechel, B., & Lohr, J. G. (2018). Comprehensive characterization of circulating and bone marrow-derived multiple myeloma cells at minimal residual disease. Seminars in Hematology, 55(1), 33-37.

Auteurs

MengYue Tian (M)

Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China.

ZhaoYun Liu (Z)

Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China.

Mei Han (M)

Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China.

Hui Liu (H)

Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China.

Chenhuan Xiang (C)

Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China.

Fu Mi (F)

Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China.

Ling Deng (L)

Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China.

Nanhao Meng (N)

Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China.

Rong Fu (R)

Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH