Exploration of the Reactivity of Multivalent Electrophiles for Affinity Labeling: Sulfonyl Fluoride as a Highly Efficient and Selective Label.
affinity labeling
carbohydrates
multivalency
nanoparticles
protein modifications
Journal
Angewandte Chemie (International ed. in English)
ISSN: 1521-3773
Titre abrégé: Angew Chem Int Ed Engl
Pays: Germany
ID NLM: 0370543
Informations de publication
Date de publication:
26 07 2021
26 07 2021
Historique:
revised:
16
05
2021
received:
29
03
2021
pubmed:
2
6
2021
medline:
13
10
2021
entrez:
1
6
2021
Statut:
ppublish
Résumé
Here we explored the reactivity of a set of multivalent electrophiles cofunctionalized with a carbohydrate ligand on gold nanoparticles to achieve efficient affinity labeling for target protein analysis. Evaluation of the reactivity and selectivity of the electrophiles against three different cognate binding proteins identified arylsulfonyl fluoride as the most efficient protein-reactive group in this study. We demonstrated that multivalent arylsulfonyl fluoride probe 4 at 50 nm concentration achieved selective affinity labeling and enrichment of a model protein PNA in cell lysate, which was more effective than photoaffinity probe 1 with arylazide group. Labeling site analysis by LC-MS/MS revealed that the nanoparticle-immobilized arylsulfonyl fluoride group can target multiple amino acid residues around the ligand binding site of the target proteins. Our study highlights the utility of arylsulfonyl fluoride as a highly effective multivalent affinity label suitable for covalently capturing unknown target proteins.
Identifiants
pubmed: 34060195
doi: 10.1002/anie.202104347
doi:
Substances chimiques
Photoaffinity Labels
0
Proteins
0
Sulfinic Acids
0
sulfuryl fluoride
64B59K7U6Q
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
17080-17087Informations de copyright
© 2021 Wiley-VCH GmbH.
Références
M. Schenone, V. Dančík, B. K. Wagner, P. A. Clemons, Nat. Chem. Biol. 2013, 9, 232-240.
S. Ziegler, V. Pries, C. Hedberg, H. Waldmann, Angew. Chem. Int. Ed. 2013, 52, 2744-2792;
Angew. Chem. 2013, 125, 2808-2859.
D. Greenbaum, A. Baruch, L. Hayrapetian, Z. Darula, A. Burlingame, K. F. Medzihradszky, M. Bogyo, Mol. Cell. Proteomics 2002, 1, 60-68.
B. F. Cravatt, A. T. Wright, J. W. Kozarich, Annu. Rev. Biochem. 2008, 77, 383-414.
K. Shiraiwa, R. Cheng, H. Nonaka, T. Tamura, I. Hamachi, Cell Chem. Biol. 2020, 27, 970-985.
M. H. Wright, S. A. Sieber, Nat. Prod. Rep. 2016, 33, 681-708.
A. M. Roberts, C. C. Ward, D. K. Nomura, Curr. Opin. Biotechnol. 2017, 43, 25-33.
A. Blencowe, W. Hayes, Soft Matter 2005, 1, 178-205.
W. Zheng, G. Li, X. Li, Arch. Pharmacal Res. 2015, 38, 1661-1685.
F. Kotzyba-Hibert, I. Kapfer, M. Goeldner, Angew. Chem. Int. Ed. Engl. 1995, 34, 1296-1312;
Angew. Chem. 1995, 107, 1391-1408.
S. S. Ge, B. Chen, Y. Y. Wu, Q. S. Long, Y. L. Zhao, P. Y. Wang, S. Yang, RSC Adv. 2018, 8, 29428-29454.
J. P. Holland, M. Gut, S. Klingler, R. Fay, A. Guillou, Chem. Eur. J. 2020, 26, 33-48.
M. Hashimoto, Y. Hatanaka, Eur. J. Org. Chem. 2008, 2513-2523.
L. Wofsy, H. Metzger, S. J. Singer, Biochemistry 1962, 1, 1031-1039.
F. Wold, Methods Enzymol. 1977, 46, 3-14.
D. Givol, M. Wilchek in Encyclopedia of Immunology, 2nd ed., Vol. 2 (Eds.: P. Delve, I. Roitt), Academic Press, New York, 1998, pp. 50-52.
T. Hayashi, I. Hamachi, Acc. Chem. Res. 2012, 45, 1460-1469.
M. Uttamchandani, J. Li, H. Sun, S. Q. Yao, ChemBioChem 2008, 9, 667-675.
M. J. Niphakis, B. F. Cravatt, Annu. Rev. Biochem. 2014, 83, 341-377.
P. Yang, K. Liu, ChemBioChem 2015, 16, 712-724.
B. P. Kok, S. Ghimire, W. Kim, S. Chatterjee, T. Johns, S. Kitamura, J. Eberhardt, D. Ogasawara, J. Xu, A. Sukiasyan, S. M. Kim, C. Godio, J. M. Bittencourt, M. Cameron, A. Galmozzi, S. Forli, D. W. Wolan, B. F. Cravatt, D. L. Boger, E. Saez, Nat. Chem. Biol. 2020, 16, 997-1005.
H. J. Benns, C. J. Wincott, E. W. Tate, M. A. Child, Curr. Opin. Chem. Biol. 2021, 60, 20-29.
C. C. Ward, J. I. Kleinman, S. M. Brittain, P. S. Lee, C. Y. S. Chung, K. Kim, Y. Petri, J. R. Thomas, J. A. Tallarico, J. M. McKenna, M. Schirle, D. K. Nomura, ACS Chem. Biol. 2019, 14, 2430-2440.
S. Tsukiji, I. Hamachi, Curr. Opin. Chem. Biol. 2014, 21, 136-143.
T. Tamura, T. Ueda, T. Goto, T. Tsukidate, Y. Shapira, Y. Nishikawa, A. Fujisawa, I. Hamachi, Nat. Commun. 2018, 9, 1870.
J. Singh, R. C. Petter, T. A. Baillie, A. Whitty, Nat. Rev. Drug Discovery 2011, 10, 307-317.
J. M. Bradshaw, J. M. McFarland, V. O. Paavilainen, A. Bisconte, D. Tam, V. T. Phan, S. Romanov, D. Finkle, J. Shu, V. Patel, T. Ton, X. Li, D. G. Loughhead, P. A. Nunn, D. E. Karr, M. E. Gerritsen, J. O. Funk, T. D. Owens, E. Verner, K. A. Brameld, R. J. Hill, D. M. Goldstein, J. Taunton, Nat. Chem. Biol. 2015, 11, 525-531.
T. A. Baillie, Angew. Chem. Int. Ed. 2016, 55, 13408-13421;
Angew. Chem. 2016, 128, 13606-13619.
E. A. Grossman, C. C. Ward, J. N. Spradlin, L. A. Bateman, T. R. Huffman, D. K. Miyamoto, J. I. Kleinman, D. K. Nomura, Cell Chem. Biol. 2017, 24, 1368-1376.e4.
N. Shindo, H. Fuchida, M. Sato, K. Watari, T. Shibata, K. Kuwata, C. Miura, K. Okamoto, Y. Hatsuyama, K. Tokunaga, S. Sakamoto, S. Morimoto, Y. Abe, M. Shiroishi, J. M. M. Caaveiro, T. Ueda, T. Tamura, N. Matsunaga, T. Nakao, S. Koyanagi, S. Ohdo, Y. Yamaguchi, I. Hamachi, M. Ono, A. Ojida, Nat. Chem. Biol. 2019, 15, 250-258.
J. L. Counihan, B. Ford, D. K. Nomura, Curr. Opin. Chem. Biol. 2016, 30, 68-76.
M. J. C. Long, Y. Aye, Cell Chem. Biol. 2017, 24, 787-800.
B. G. Hoffstrom, A. Kaplan, R. Letso, R. S. Schmid, G. J. Turmel, D. C. Lo, B. R. Stockwell, Nat. Chem. Biol. 2010, 6, 900-906.
P. Y. Yang, K. Liu, M. H. Ngai, M. J. Lear, R. Wenk, S. Q. Yao, J. Am. Chem. Soc. 2010, 132, 656-666.
T. Wirth, K. Schmuck, L. F. Tietze, S. A. Sieber, Angew. Chem. Int. Ed. 2012, 51, 2874-2877;
Angew. Chem. 2012, 124, 2928-2931.
J. A. Clulow, E. M. Storck, T. Lanyon-Hogg, K. A. Kalesh, L. H. Jones, E. W. Tate, Chem. Commun. 2017, 53, 5182-5185.
U. Haedke, E. V. Küttler, O. Vosyka, Y. Yang, S. H. L. Verhelst, Curr. Opin. Chem. Biol. 2013, 17, 102-109.
O. O. Fadeyi, L. R. Hoth, C. Choi, X. Feng, A. Gopalsamy, E. C. Hett, R. E. Kyne, Jr., R. P. Robinson, L. H. Jones, ACS Chem. Biol. 2017, 12, 2015-2020.
K. Sakurai, Y. Hatai, A. Okada, Chem. Sci. 2016, 7, 702-706.
K. Sakurai, A. Kato, K. Adachi, Bioorg. Med. Chem. 2018, 28, 3227-3230.
K. Mori, K. Sakurai, Org. Biomol. Chem. 2021, 19, 1268-1273.
L. L. Kiessling, J. E. Gestwicki, L. E. Strong, Angew. Chem. Int. Ed. 2006, 45, 2348-2368;
Angew. Chem. 2006, 118, 2408-2429.
M. Mammen, S. K. Choi, G. M. Whitesides, Angew. Chem. Int. Ed. 1998, 37, 2754-2794;
Angew. Chem. 1998, 110, 2908-2953.
P. I. Kitov, D. R. Bundle, J. Am. Chem. Soc. 2003, 125, 16271-16284.
J. J. Lundquist, E. J. Toone, Chem. Rev. 2002, 102, 555-578.
R. J. Pieters, Org. Biomol. Chem. 2009, 7, 2013-2025.
A. J. Cagnoni, O. Varela, M. L. Uhrig, J. Kovensky, Eur. J. Org. Chem. 2013, 972-983.
C. Svensson, S. Teneberg, C. L. Nilsson, A. Kjellberg, F. P. Schwarz, N. Sharon, U. Krengel, J. Mol. Biol. 2002, 321, 69-83.
S. Sharma, S. Bharadwaj, A. Surolia, S. K. Podder, Biochem. J. 1998, 333, 539-542.
G. Chen, A. Heim, D. Riether, D. Yee, Y. Milgrom, M. A. Gawinowicz, D. Sames, J. Am. Chem. Soc. 2003, 125, 8130-8133.
C. Dingels, F. Wurm, M. Wagner, H. A. Klok, H. Frey, Chem. Eur. J. 2012, 18, 16828-16835.
M. Fonvielle, N. Sakkas, L. Iannazzo, C. L. Fournis, D. Patin, D. Mengin-Lecreulx, A. El-Sagheer, E. Braud, S. Cardon, T. Brown, M. Arthur, M. Etheve-Quelquejeu, Angew. Chem. Int. Ed. 2016, 55, 13553-13557;
Angew. Chem. 2016, 128, 13751-13755.
K. M. Backus, B. E. Correia, K. M. Lum, S. Forli, B. D. Horning, G. E. González-Páez, S. Chatterjee, B. R. Lanning, J. R. Teijaro, A. J. Olson, D. W. Wolan, B. F. Cravatt, Nature 2016, 534, 570-574.
J. Dong, L. Krasnova, M. G. Finn, K. B. Sharpless, Angew. Chem. Int. Ed. 2014, 53, 9430-9448;
Angew. Chem. 2014, 126, 9584-9603.
A. S. Barrow, C. J. Smedley, Q. Zheng, S. Li, J. Dong, J. E. Moses, Chem. Soc. Rev. 2019, 48, 4731-4758.
R. F. Colman, FASEB J. 1997, 11, 217-226.
E. C. Hett, H. Xu, K. F. Geoghegan, A. Gopalsamy, R. E. Kyne, C. A. Menard, A. Narayanan, M. D. Parikh, S. Liu, L. Roberts, R. P. Robinson, M. A. Tones, L. H. Jones, ACS Chem. Biol. 2015, 10, 1094-1098.
A. Narayanan, L. H. Jones, Chem. Sci. 2015, 6, 2650-2659.
Q. Zhao, X. Ouyang, X. Wan, K. S. Gajiwala, J. C. Kath, L. H. Jones, A. L. Burlingame, J. Taunton, J. Am. Chem. Soc. 2017, 139, 680-685.
B. Yang, H. Wu, P. D. Schnier, Y. Liu, J. Liu, N. Wang, W. F. DeGrado, L. Wang, Proc. Natl. Acad. Sci. USA 2018, 115, 11162-11167.
L. H. Jones, J. W. Kelly, RSC Med. Chem. 2020, 11, 10-17.
E. Leyva, M. S. Platz, G. Persy, J. Wirz, J. Am. Chem. Soc. 1986, 108, 3783-3790.
ArAz group serves as a photoaffinity label by generating nitrene upon UV irradiation. It is also known to further isomerize from nitrene into highly electrophilic dehydroazepine via a ring-expansion, which can react with lysine residues.
D. Budhadev, E. Poole, I. Nehlmeier, Y. Liu, J. Hooper, E. Kalverda, U. S. Akshath, N. Hondow, W. B. Turnbull, S. Pöhlmann, Y. Guo, D. Zhou, J. Am. Chem. Soc. 2020, 142, 18022-18034.
The Kd values calculated based on the concentration of multivalent probe 6 are compared with those of monomeric lactose because the apparent binding affinity per probe is important for the apparent labeling efficiency of the multivalent probes.
The band tailing observed is likely due to the presence of the lipoate moiety, which co-eluted with the labeled proteins upon cleavage of the functionalities from the gold nanoparticle surface.
R. Banerjee, K. Das, R. Ravishankar, K. Suguna, A. Surolia, M. Vijayan, J. Mol. Biol. 1996, 259, 281-296. (PDB: 2PEL).
A. G. Gabdoulkhakov, Y. Savochkina, N. Konareva, R. Krauspenhaar, S. Stoeva, S. V. Nikonov, W. Voelter, C. Betzel, A. M. Mikhailov, https://doi.org/10.2210/pdb1RZO/pdb. The Protein Data Bank, 2004. (PDB:1RZO).
K. A. Majorek, P. J. Porebski, A. Dayal, M. D. Zimmerman, K. Jablonska, A. J. Stewart, M. Chruszcz, W. Minor, Mol. Immunol. 2012, 52, 174-182.
H. Otsuka, Y. Akiyama, Y. Nagasaki, K. Kataoka, J. Am. Chem. Soc. 2001, 123, 8226-8230.
V. L. Mendoza, R. W. Vachet, Mass Spectrom. Rev. 2009, 28, 785-815.
N. V. Konareva, A. G. Gabdulkhakov, S. Eschenburg, S. Stoeva, A. N. Popov, R. Krauspenhaar, M. E. Andrianova, Y. Savochkina, I. I. Agapov, A. G. Tonevitskii, A. N. Kornev, V. V. Kornilov, V. N. Zaitsev, W. Voelter, C. Betzel, S. V. Nikonov, B. K. Vainshtein, A. M. Mikhailov, Crystallogr. Rep. 2001, 46, 792-800.
RCA, which is a dimer of an α/β heterodimer, has one galactose binding site in chain A and three in chain B, of which that of chain B involving Glu35, Lys40, and Asp46 is considered a primary binding site.
T. E. Creighton, Proteins: structures and molecular properties, WH Freeman, New York, 1993, pp. 2-4.
A. D. White, A. K. Nowinski, W. Huang, A. J. Keefe, F. Sun, S. Jiang, Chem. Sci. 2012, 3, 3488-3494.
E. Weerapana, G. M. Simon, B. F. Cravatt, Nat. Chem. Biol. 2008, 4, 405-407.
L. M. McGregor, M. L. Jenkins, C. Kerwin, J. E. Burke, K. M. Shokat, Biochemistry 2017, 56, 3178-3183.
L. Petri, P. Ábrányi-Balogh, I. Tímea, G. Pálfy, A. Perczel, D. Knez, M. Hrast, M. Gobec, I. Sosič, K. Nyíri, B. G. Vértessy, N. Jänsch, C. Desczyk, F. J. Meyer-Almes, I. Ogris, S. G. Grdadolnik, L. G. Iacovino, C. Binda, S. Gobec, G. M. Keserű, ChemBioChem 2021, 22, 743-753.
E. Weerapana, C. Wang, G. M. Simon, F. Richter, S. Khare, M. B. D. Dillon, D. A. Bachovchin, K. Mowen, D. Baker, B. F. Cravatt, Nature 2010, 468, 790-795.
S. M. Hacker, K. M. Backus, M. R. Lazear, S. Forli, B. E. Correia, B. F. Cravatt, Nat. Chem. 2017, 9, 1181-1190.
An electrostatic representation of PNA suggested that the protein surface around the labeled sites was negatively charged.
A mass data search of the LC/MS data in Figure 5 b did not provide a mass peak corresponding to a crosslinked product that could be formed between lactose-PEG-lipoate 7 and sulfonyl fluoride-PEG-lipoate 8 c, indicating that the lactose ligand moiety of 7 did not cross-react with arylsulfonyl fluoride of 8 c on the same nanoparticle.