Treatment with Histone Deacetylase Inhibitor Attenuates Peripheral Inflammation-Induced Cognitive Dysfunction and Microglial Activation: The Effect of SAHA as a Peripheral HDAC Inhibitor.


Journal

Neurochemical research
ISSN: 1573-6903
Titre abrégé: Neurochem Res
Pays: United States
ID NLM: 7613461

Informations de publication

Date de publication:
Sep 2021
Historique:
received: 01 02 2021
accepted: 28 05 2021
revised: 09 05 2021
pubmed: 4 6 2021
medline: 4 11 2021
entrez: 3 6 2021
Statut: ppublish

Résumé

It has been demonstrated that peripheral inflammation induces cognitive dysfunction. Several histone deacetylase (HDAC) inhibitors ameliorate cognitive dysfunction in animal models of not only peripheral inflammation but also Alzheimer's disease. However, it is not clear which HDAC expressed in the central nervous system or peripheral tissues is involved in the therapeutic effect of HDAC inhibition on cognitive dysfunction. Hence, the present study investigated the effect of peripheral HDAC inhibition on peripheral inflammation-induced cognitive dysfunction. Suberoylanilide hydroxamic acid (SAHA), a pan-HDAC inhibitor that is mainly distributed in peripheral tissues after intraperitoneal administration, was found to prevent peripheral inflammation-induced cognitive dysfunction. Moreover, pretreatment with SAHA dramatically increased mRNA expression of interleukin-10, an anti-inflammatory cytokine, in peripheral and central tissues and attenuated peripheral inflammation-induced microglial activation in the CA3 region of the hippocampus. Minocycline, a macrophage/microglia inhibitor, also ameliorated cognitive dysfunction. Furthermore, as a result of treatment with liposomal clodronate, depletion of peripheral macrophages partially ameliorated the peripheral inflammation-evoked cognitive dysfunction. Taken together, these findings demonstrate that inhibition of peripheral HDAC plays a critical role in preventing cognitive dysfunction induced by peripheral inflammation via the regulation of anti-inflammatory cytokine production and the inhibition of microglial functions in the hippocampus. Thus, these findings could provide support for inhibition of peripheral HDAC as a novel therapeutic strategy for inflammation-induced cognitive dysfunction.

Identifiants

pubmed: 34081246
doi: 10.1007/s11064-021-03367-1
pii: 10.1007/s11064-021-03367-1
doi:

Substances chimiques

Cytokines 0
Histone Deacetylase Inhibitors 0
Lipopolysaccharides 0
Vorinostat 58IFB293JI

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

2285-2296

Informations de copyright

© 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Heneka MT, Kummer MP, Latz E (2014) Innate immune activation in neurodegenerative disease. Nat Rev Immunol 14(7):463–477. https://doi.org/10.1038/nri3705
doi: 10.1038/nri3705 pubmed: 24962261
Hopperton KE, Mohammad D, Trépanier MO, Giuliano V, Bazinet RP (2018) Markers of microglia in post-mortem brain samples from patients with Alzheimer’s disease: a systematic review. Mol Psychiatry 23(2):177–198. https://doi.org/10.1038/mp.2017.246
doi: 10.1038/mp.2017.246 pubmed: 29230021
Leng F, Edison P (2020) Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nat Rev Neurol. https://doi.org/10.1038/s41582-020-00435-y
doi: 10.1038/s41582-020-00435-y pubmed: 33318676
Streit WJ, Khoshbouei H, Bechmann I (2020) The role of microglia in sporadic Alzheimer’s disease. J Alzheimers Dis. https://doi.org/10.3233/JAD-201248
doi: 10.3233/JAD-201248
Fidalgo AR, Cibelli M, White JP, Nagy I, Maze M, Ma D (2011) Systemic inflammation enhances surgery-induced cognitive dysfunction in mice. Neurosci Lett 498(1):63–66. https://doi.org/10.1016/j.neulet.2011.04.063
doi: 10.1016/j.neulet.2011.04.063 pubmed: 21575676
Wang W, Wang Y, Wu H, Lei L, Xu S, Shen X et al (2014) Postoperative cognitive dysfunction: current developments in mechanism and prevention. Med Sci Monit 20:1908–1912. https://doi.org/10.12659/MSM.892485
doi: 10.12659/MSM.892485 pubmed: 25306127 pmcid: 4206478
Calsavara AJC, Nobre V, Barichello T, Teixeira AL (2018) Post-sepsis cognitive impairment and associated risk factors: a systematic review. Aust Crit Care 31(4):242–253. https://doi.org/10.1016/j.aucc.2017.06.001
doi: 10.1016/j.aucc.2017.06.001 pubmed: 28645546
Stebbins RC, Noppert GA, Yang YC, Dowd JB, Simanek A, Aiello AE (2020) Immune response to cytomegalovirus and cognition in the health and retirement study. Am J Epidemiol. https://doi.org/10.1093/aje/kwaa238
doi: 10.1093/aje/kwaa238
in t’Veld BA, Ruitenberg A, Hofman A, Launer LJ, van Duijn CM, Stijnen T et al (2001) Nonsteroidal antiinflammatory drugs and the risk of Alzheimer’s disease. N Engl J Med 345(21):1515–1521. https://doi.org/10.1056/NEJMoa010178
doi: 10.1056/NEJMoa010178
Catorce MN, Gevorkian G (2016) LPS-induced murine neuroinflammation model: main features and suitability for pre-clinical assessment of nutraceuticals. Curr Neuropharmacol 14(2):155–164. https://doi.org/10.2174/1570159x14666151204122017
doi: 10.2174/1570159x14666151204122017 pubmed: 26639457 pmcid: 4825946
Savi FF, de Oliveira A, de Medeiros GF, Bozza FA, Michels M, Sharshar T et al (2020) What animal models can tell us about long-term cognitive dysfunction following sepsis: a systematic review. Neurosci Biobehav Rev. https://doi.org/10.1016/j.neubiorev.2020.12.005
doi: 10.1016/j.neubiorev.2020.12.005 pubmed: 33309906
Rosi S, Vazdarjanova A, Ramirez-Amaya V, Worley PF, Barnes CA, Wenk GL (2006) Memantine protects against LPS-induced neuroinflammation, restores behaviorally-induced gene expression and spatial learning in the rat. Neuroscience 142(4):1303–1315. https://doi.org/10.1016/j.neuroscience.2006.08.017
doi: 10.1016/j.neuroscience.2006.08.017 pubmed: 16989956
Qin L, Wu X, Block ML, Liu Y, Breese GR, Hong JS et al (2007) Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia 55(5):453–462. https://doi.org/10.1002/glia.20467
doi: 10.1002/glia.20467 pubmed: 17203472 pmcid: 2871685
Okun E, Griffioen KJ, Mattson MP (2011) Toll-like receptor signaling in neural plasticity and disease. Trends Neurosci 34(5):269–281. https://doi.org/10.1016/j.tins.2011.02.005
doi: 10.1016/j.tins.2011.02.005 pubmed: 21419501 pmcid: 3095763
Noh H, Jeon J, Seo H (2014) Systemic injection of LPS induces region-specific neuroinflammation and mitochondrial dysfunction in normal mouse brain. Neurochem Int 69:35–40. https://doi.org/10.1016/j.neuint.2014.02.008
doi: 10.1016/j.neuint.2014.02.008 pubmed: 24607701
Morrison DC, Leive L (1975) Fractions of lipopolysaccharide from Escherichia coli O111:B4 prepared by two extraction procedures. J Biol Chem 250(8):2911–2919
doi: 10.1016/S0021-9258(19)41574-3
Singh AK, Jiang Y (2004) How does peripheral lipopolysaccharide induce gene expression in the brain of rats? Toxicology 201(1–3):197–207. https://doi.org/10.1016/j.tox.2004.04.015
doi: 10.1016/j.tox.2004.04.015 pubmed: 15297033
Banks WA, Robinson SM (2010) Minimal penetration of lipopolysaccharide across the murine blood-brain barrier. Brain Behav Immun 24(1):102–109. https://doi.org/10.1016/j.bbi.2009.09.001
doi: 10.1016/j.bbi.2009.09.001 pubmed: 19735725
Xaio H, Banks WA, Niehoff ML, Morley JE (2001) Effect of LPS on the permeability of the blood-brain barrier to insulin. Brain Res 896(1–2):36–42. https://doi.org/10.1016/s0006-8993(00)03247-9
doi: 10.1016/s0006-8993(00)03247-9 pubmed: 11277970
Banks WA, Gray AM, Erickson MA, Salameh TS, Damodarasamy M, Sheibani N et al (2015) Lipopolysaccharide-induced blood-brain barrier disruption: roles of cyclooxygenase, oxidative stress, neuroinflammation, and elements of the neurovascular unit. J Neuroinflammation 12:223. https://doi.org/10.1186/s12974-015-0434-1
doi: 10.1186/s12974-015-0434-1 pubmed: 26608623 pmcid: 4660627
Haruwaka K, Ikegami A, Tachibana Y, Ohno N, Konishi H, Hashimoto A et al (2019) Dual microglia effects on blood brain barrier permeability induced by systemic inflammation. Nat Commun 10(1):5816. https://doi.org/10.1038/s41467-019-13812-z
doi: 10.1038/s41467-019-13812-z pubmed: 31862977 pmcid: 6925219
Chuang DM, Leng Y, Marinova Z, Kim HJ, Chiu CT (2009) Multiple roles of HDAC inhibition in neurodegenerative conditions. Trends Neurosci 32(11):591–601. https://doi.org/10.1016/j.tins.2009.06.002
doi: 10.1016/j.tins.2009.06.002 pubmed: 19775759 pmcid: 2771446
Kwok JB (2010) Role of epigenetics in Alzheimer’s and Parkinson’s disease. Epigenomics 2(5):671–682. https://doi.org/10.2217/epi.10.43
doi: 10.2217/epi.10.43 pubmed: 22122050
Daniilidou M, Koutroumani M, Tsolaki M (2011) Epigenetic mechanisms in Alzheimer’s disease. Curr Med Chem 18(12):1751–1756. https://doi.org/10.2174/092986711795496872
doi: 10.2174/092986711795496872 pubmed: 21466476
Cantley MD, Haynes DR (2013) Epigenetic regulation of inflammation: progressing from broad acting histone deacetylase (HDAC) inhibitors to targeting specific HDACs. Inflammopharmacology 21(4):301–307. https://doi.org/10.1007/s10787-012-0166-0
doi: 10.1007/s10787-012-0166-0 pubmed: 23341163
Feng Y, Jankovic J, Wu YC (2015) Epigenetic mechanisms in Parkinson’s disease. J Neurol Sci 349(1–2):3–9. https://doi.org/10.1016/j.jns.2014.12.017
doi: 10.1016/j.jns.2014.12.017 pubmed: 25553963
Richon VM, Emiliani S, Verdin E, Webb Y, Breslow R, Rifkind RA et al (1998) A class of hybrid polar inducers of transformed cell differentiation inhibits histone deacetylases. Proc Natl Acad Sci USA 95(6):3003–3007. https://doi.org/10.1073/pnas.95.6.3003
doi: 10.1073/pnas.95.6.3003 pubmed: 9501205 pmcid: 19684
Schroeder FA, Lewis MC, Fass DM, Wagner FF, Zhang YL, Hennig KM et al (2013) A selective HDAC 1/2 inhibitor modulates chromatin and gene expression in brain and alters mouse behavior in two mood-related tests. PLoS ONE 8(8):e71323. https://doi.org/10.1371/journal.pone.0071323
doi: 10.1371/journal.pone.0071323 pubmed: 23967191 pmcid: 3743770
Hsing CH, Hung SK, Chen YC, Wei TS, Sun DP, Wang JJ et al (2015) Histone deacetylase inhibitor trichostatin A ameliorated endotoxin-induced neuroinflammation and cognitive dysfunction. Mediators Inflamm 2015:163140. https://doi.org/10.1155/2015/163140
doi: 10.1155/2015/163140 pubmed: 26273133 pmcid: 4530275
Peng L, Zhu M, Yang Y, Weng Y, Zou W, Zhu X et al (2019) Neonatal lipopolysaccharide challenge induces long-lasting spatial cognitive impairment and dysregulation of hippocampal histone acetylation in mice. Neuroscience 398:76–87. https://doi.org/10.1016/j.neuroscience.2018.12.001
doi: 10.1016/j.neuroscience.2018.12.001 pubmed: 30543856
Chong W, Li Y, Liu B, Zhao T, Fukudome EY, Liu Z et al (2012) Histone deacetylase inhibitor suberoylanilide hydroxamic acid attenuates toll-like receptor 4 signaling in lipopolysaccharide-stimulated mouse macrophages. J Surg Res 178(2):851–859. https://doi.org/10.1016/j.jss.2012.07.023
doi: 10.1016/j.jss.2012.07.023 pubmed: 22868051 pmcid: 3496062
Hockly E, Richon VM, Woodman B, Smith DL, Zhou X, Rosa E et al (2003) Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington’s disease. Proc Natl Acad Sci USA 100(4):2041–2046. https://doi.org/10.1073/pnas.0437870100
doi: 10.1073/pnas.0437870100 pubmed: 12576549 pmcid: 149955
Yin D, Ong JM, Hu J, Desmond JC, Kawamata N, Konda BM et al (2007) Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor: effects on gene expression and growth of glioma cells in vitro and in vivo. Clin Cancer Res 13(3):1045–1052. https://doi.org/10.1158/1078-0432.CCR-06-1261
doi: 10.1158/1078-0432.CCR-06-1261 pubmed: 17289901
Hendricks JA, Keliher EJ, Marinelli B, Reiner T, Weissleder R, Mazitschek R (2011) In vivo PET imaging of histone deacetylases by 18F-suberoylanilide hydroxamic acid (18F-SAHA). J Med Chem 54(15):5576–5582. https://doi.org/10.1021/jm200620f
doi: 10.1021/jm200620f pubmed: 21721525 pmcid: 3150598
Hanson JE, La H, Plise E, Chen YH, Ding X, Hanania T et al (2013) SAHA enhances synaptic function and plasticity in vitro but has limited brain availability in vivo and does not impact cognition. PLoS ONE 8(7):e69964. https://doi.org/10.1371/journal.pone.0069964
doi: 10.1371/journal.pone.0069964 pubmed: 23922875 pmcid: 3724849
Abu-Ghefreh AA, Masocha W (2010) Enhancement of antinociception by coadministration of minocycline and a non-steroidal anti-inflammatory drug indomethacin in naïve mice and murine models of LPS-induced thermal hyperalgesia and monoarthritis. BMC Musculoskelet Disord 11:276. https://doi.org/10.1186/1471-2474-11-276
doi: 10.1186/1471-2474-11-276 pubmed: 21122103 pmcid: 3009629
Irie Y, Tsubota M, Ishikura H, Sekiguchi F, Terada Y, Tsujiuchi T et al (2017) Macrophage-derived HMGB1 as a pain mediator in the early stage of acute pancreatitis in mice: targeting RAGE and CXCL12/CXCR4 axis. J Neuroimmune Pharmacol 12(4):693–707. https://doi.org/10.1007/s11481-017-9757-2
doi: 10.1007/s11481-017-9757-2 pubmed: 28755135
Zhang X, Yan F, Feng J, Qian H, Cheng Z, Yang Q et al (2018) Dexmedetomidine inhibits inflammatory reaction in the hippocampus of septic rats by suppressing NF-κB pathway. PLoS ONE 13(5):e0196897. https://doi.org/10.1371/journal.pone.0196897
doi: 10.1371/journal.pone.0196897 pubmed: 29723264 pmcid: 5933780
Antunes M, Biala G (2012) The novel object recognition memory: neurobiology, test procedure, and its modifications. Cogn Process 13(2):93–110
doi: 10.1007/s10339-011-0430-z
Takuma K, Hara Y, Kataoka S, Kawanai T, Maeda Y, Watanabe R et al (2014) Chronic treatment with valproic acid or sodium butyrate attenuates novel object recognition deficits and hippocampal dendritic spine loss in a mouse model of autism. Pharmacol Biochem Behav 126:43–49. https://doi.org/10.1016/j.pbb.2014.08.013
doi: 10.1016/j.pbb.2014.08.013 pubmed: 25240644
Hisaoka-Nakashima K, Tomimura Y, Yoshii T, Ohata K, Takada N, Zhang FF et al (2019) High-mobility group box 1-mediated microglial activation induces anxiodepressive-like behaviors in mice with neuropathic pain. Prog Neuropsychopharmacol Biol Psychiatry 92:347–362. https://doi.org/10.1016/j.pnpbp.2019.02.005
doi: 10.1016/j.pnpbp.2019.02.005 pubmed: 30763674
Iwamoto M, Nakamura Y, Takemura M, Hisaoka-Nakashima K, Morioka N (2020) TLR4-TAK1-p38 MAPK pathway and HDAC6 regulate the expression of sigma-1 receptors in rat primary cultured microglia. J Pharmacol Sci 144(1):23–29. https://doi.org/10.1016/j.jphs.2020.06.007
doi: 10.1016/j.jphs.2020.06.007 pubmed: 32653342
Nakamura Y, Izumi H, Shimizu T, Hisaoka-Nakashima K, Morioka N, Nakata Y (2013) Volume transmission of substance P in striatum induced by intraplantar formalin injection attenuates nociceptive responses via activation of the neurokinin 1 receptor. J Pharmacol Sci 121(4):257–271. https://doi.org/10.1254/jphs.12218FP
doi: 10.1254/jphs.12218FP pubmed: 23514787
Tsankova N, Renthal W, Kumar A, Nestler EJ (2007) Epigenetic regulation in psychiatric disorders. Nat Rev Neurosci 8(5):355–367. https://doi.org/10.1038/nrn2132
doi: 10.1038/nrn2132 pubmed: 17453016
Fischer A, Sananbenesi F, Mungenast A, Tsai LH (2010) Targeting the correct HDAC(s) to treat cognitive disorders. Trends Pharmacol Sci 31(12):605–617. https://doi.org/10.1016/j.tips.2010.09.003
doi: 10.1016/j.tips.2010.09.003 pubmed: 20980063
Shakespear MR, Halili MA, Irvine KM, Fairlie DP, Sweet MJ (2011) Histone deacetylases as regulators of inflammation and immunity. Trends Immunol 32(7):335–343. https://doi.org/10.1016/j.it.2011.04.001
doi: 10.1016/j.it.2011.04.001 pubmed: 21570914
Beutler B, Rietschel ET (2003) Innate immune sensing and its roots: the story of endotoxin. Nat Rev Immunol 3(2):169–176. https://doi.org/10.1038/nri1004
doi: 10.1038/nri1004 pubmed: 12563300
Ogawa Y, Irukayama-Tomobe Y, Murakoshi N, Kiyama M, Ishikawa Y, Hosokawa N et al (2016) Peripherally administered orexin improves survival of mice with endotoxin shock. Elife. https://doi.org/10.7554/eLife.21055
doi: 10.7554/eLife.21055 pubmed: 28035899 pmcid: 5245965
Terrando N, Rei Fidalgo A, Vizcaychipi M, Cibelli M, Ma D, Monaco C et al (2010) The impact of IL-1 modulation on the development of lipopolysaccharide-induced cognitive dysfunction. Crit Care 14(3):R88. https://doi.org/10.1186/cc9019
doi: 10.1186/cc9019 pubmed: 20470406 pmcid: 2911722
Kitazawa M, Cheng D, Tsukamoto MR, Koike MA, Wes PD, Vasilevko V et al (2011) Blocking IL-1 signaling rescues cognition, attenuates tau pathology, and restores neuronal β-catenin pathway function in an Alzheimer’s disease model. J Immunol 187(12):6539–6549. https://doi.org/10.4049/jimmunol.1100620
doi: 10.4049/jimmunol.1100620 pubmed: 22095718
Lonnemann N, Hosseini S, Marchetti C, Skouras DB, Stefanoni D, D’Alessandro A et al (2020) The NLRP3 inflammasome inhibitor OLT1177 rescues cognitive impairment in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci USA 117(50):32145–32154. https://doi.org/10.1073/pnas.2009680117
doi: 10.1073/pnas.2009680117 pubmed: 33257576 pmcid: 7749353
Armstrong L, Jordan N, Millar A (1996) Interleukin 10 (IL-10) regulation of tumour necrosis factor alpha (TNF-alpha) from human alveolar macrophages and peripheral blood monocytes. Thorax 51(2):143–149. https://doi.org/10.1136/thx.51.2.143
doi: 10.1136/thx.51.2.143 pubmed: 8711645 pmcid: 473022
Richwine AF, Sparkman NL, Dilger RN, Buchanan JB, Johnson RW (2009) Cognitive deficits in interleukin-10-deficient mice after peripheral injection of lipopolysaccharide. Brain Behav Immun 23(6):794–802. https://doi.org/10.1016/j.bbi.2009.02.020
doi: 10.1016/j.bbi.2009.02.020 pubmed: 19272439 pmcid: 2881543
Sun Y, Ma J, Li D, Li P, Zhou X, Li Y et al (2019) Interleukin-10 inhibits interleukin-1β production and inflammasome activation of microglia in epileptic seizures. J Neuroinflammation 16(1):66. https://doi.org/10.1186/s12974-019-1452-1
doi: 10.1186/s12974-019-1452-1 pubmed: 30922332 pmcid: 6437919
Shemer A, Scheyltjens I, Frumer GR, Kim JS, Grozovski J, Ayanaw S et al (2020) Interleukin-10 prevents pathological microglia hyperactivation following peripheral endotoxin challenge. Immunity 53(5):1033–49.e7. https://doi.org/10.1016/j.immuni.2020.09.018
doi: 10.1016/j.immuni.2020.09.018 pubmed: 33049219
Stanfield BA, Purves T, Palmer S, Sullenger B, Welty-Wolf K, Haines K et al (2021) IL-10 and class 1 histone deacetylases act synergistically and independently on the secretion of proinflammatory mediators in alveolar macrophages. PLoS ONE 16(1):e0245169. https://doi.org/10.1371/journal.pone.0245169
doi: 10.1371/journal.pone.0245169 pubmed: 33471802 pmcid: 33471802
Lang R, Patel D, Morris JJ, Rutschman RL, Murray PJ (2002) Shaping gene expression in activated and resting primary macrophages by IL-10. J Immunol 169(5):2253–2263. https://doi.org/10.4049/jimmunol.169.5.2253
doi: 10.4049/jimmunol.169.5.2253 pubmed: 12193690
Staples KJ, Smallie T, Williams LM, Foey A, Burke B, Foxwell BM et al (2007) IL-10 induces IL-10 in primary human monocyte-derived macrophages via the transcription factor Stat3. J Immunol 178(8):4779–4785. https://doi.org/10.4049/jimmunol.178.8.4779
doi: 10.4049/jimmunol.178.8.4779 pubmed: 17404258
Saraiva M, O’Garra A (2010) The regulation of IL-10 production by immune cells. Nat Rev Immunol 10(3):170–181. https://doi.org/10.1038/nri2711
doi: 10.1038/nri2711 pubmed: 20154735
Henry CJ, Huang Y, Wynne A, Hanke M, Himler J, Bailey MT et al (2008) Minocycline attenuates lipopolysaccharide (LPS)-induced neuroinflammation, sickness behavior, and anhedonia. J Neuroinflammation 5:15. https://doi.org/10.1186/1742-2094-5-15
doi: 10.1186/1742-2094-5-15 pubmed: 18477398 pmcid: 2412862
He H, Geng T, Chen P, Wang M, Hu J, Kang L et al (2016) NK cells promote neutrophil recruitment in the brain during sepsis-induced neuroinflammation. Sci Rep 6:27711. https://doi.org/10.1038/srep27711
doi: 10.1038/srep27711 pubmed: 27270556 pmcid: 4897692
Zenaro E, Pietronigro E, Della Bianca V, Piacentino G, Marongiu L, Budui S et al (2015) Neutrophils promote Alzheimer’s disease-like pathology and cognitive decline via LFA-1 integrin. Nat Med 21(8):880–886. https://doi.org/10.1038/nm.3913
doi: 10.1038/nm.3913 pubmed: 26214837
Xiong H, Zeng YC, Zheng J, Thylin M, Gendelman HE (1999) Soluble HIV-1 infected macrophage secretory products mediate blockade of long-term potentiation: a mechanism for cognitive dysfunction in HIV-1-associated dementia. J Neurovirol 5(5):519–528. https://doi.org/10.3109/13550289909045381
doi: 10.3109/13550289909045381 pubmed: 10568889
Degos V, Vacas S, Han Z, van Rooijen N, Gressens P, Su H et al (2013) Depletion of bone marrow-derived macrophages perturbs the innate immune response to surgery and reduces postoperative memory dysfunction. Anesthesiology 118(3):527–536. https://doi.org/10.1097/ALN.0b013e3182834d94
doi: 10.1097/ALN.0b013e3182834d94 pubmed: 23426204
Zhang D, Li N, Wang Y, Lu W, Zhang Y, Chen Y et al (2019) Methane ameliorates post-operative cognitive dysfunction by inhibiting microglia NF-κB/MAPKs pathway and promoting IL-10 expression in aged mice. Int Immunopharmacol 71:52–60. https://doi.org/10.1016/j.intimp.2019.03.003
doi: 10.1016/j.intimp.2019.03.003 pubmed: 30877874

Auteurs

Naoki Takada (N)

Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima, 734-8553, Japan.

Yoki Nakamura (Y)

Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima, 734-8553, Japan. nakayoki@hiroshima-u.ac.jp.

Keisuke Ikeda (K)

Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima, 734-8553, Japan.

Naoki Takaoka (N)

Department of Neurochemistry and Environmental Health Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima, 734-8553, Japan.
School of Pharmaceutical Sciences, Wakayama Medical University, 25-1 Shichibancho, Wakayama, 640-8156, Japan.

Kazue Hisaoka-Nakashima (K)

Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima, 734-8553, Japan.

Seigo Sanoh (S)

Department of Neurochemistry and Environmental Health Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima, 734-8553, Japan.
School of Pharmaceutical Sciences, Wakayama Medical University, 25-1 Shichibancho, Wakayama, 640-8156, Japan.

Yaichiro Kotake (Y)

Department of Neurochemistry and Environmental Health Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima, 734-8553, Japan.

Yoshihiro Nakata (Y)

Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima, 734-8553, Japan.

Norimitsu Morioka (N)

Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima, 734-8553, Japan. mnori@hiroshima-u.ac.jp.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male
Humans Meals Time Factors Female Adult

Classifications MeSH