A Newly Synthesized Flavone from Luteolin Escapes from COMT-Catalyzed Methylation and Inhibits Lipopolysaccharide-Induced Inflammation in RAW264.7 Macrophages via JNK, p38 and NF-κB Signaling Pathways.
Amidines
Animals
Anti-Inflammatory Agents
/ pharmacology
Catalysis
Catechol O-Methyltransferase
/ metabolism
Cell Survival
/ drug effects
Cytokines
/ metabolism
Flavones
/ biosynthesis
Inflammation
/ chemically induced
Inflammation Mediators
Interleukin-1beta
/ metabolism
Lipopolysaccharides
/ adverse effects
Luteolin
/ metabolism
Macrophages
/ drug effects
Methylation
Mice
NF-kappa B
/ metabolism
Nitric Oxide Synthase Type II
/ metabolism
RAW 264.7 Cells
Signal Transduction
/ drug effects
2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH)
Luteolin
catechol-O-methyltransferases (COMT)
inflammation
Journal
Journal of microbiology and biotechnology
ISSN: 1738-8872
Titre abrégé: J Microbiol Biotechnol
Pays: Korea (South)
ID NLM: 9431852
Informations de publication
Date de publication:
28 Jan 2022
28 Jan 2022
Historique:
received:
20
04
2021
revised:
13
05
2021
accepted:
25
05
2021
pubmed:
9
6
2021
medline:
22
2
2022
entrez:
8
6
2021
Statut:
ppublish
Résumé
Luteolin is a common dietary flavone possessing potent anti-inflammatory activities. However, when administrated in vivo, luteolin becomes methylated by catechol-O-methyltransferases (COMT) owing to the catechol ring in the chemical structure, which largely diminishes its anti-inflammatory effect. In this study, we made a modification on luteolin, named LUA, which was generated by the chemical reaction between luteolin and 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH). Without a catechol ring in the chemical structure, this new flavone could escape from the COMT-catalyzed methylation, thus affording the potential to exert its functions in the original form when administrated in the organism. Moreover, an LPS-stimulated RAW cell model was applied to detect the anti-inflammatory properties. LUA showed much more superior inhibitory effect on LPS-induced production of NO than diosmetin (a major methylated form of luteolin) and significantly suppressed upregulation of iNOS and COX-2 in macrophages. LUA treatment dramatically reduced LPS-stimulated reactive oxygen species (ROS) and mRNA levels of pro-inflammatory mediators such as IL-1β, IL-6, IL-8 and IFN-β. Furthermore, LUA significantly reduced the phosphorylation of JNK and p38 without affecting that of ERK. LUA also inhibited the activation of NF-κB through suppression of p65 phosphorylation and nuclear translocation.
Identifiants
pubmed: 34099595
pii: jmb.2104.04027
doi: 10.4014/jmb.2104.04027
pmc: PMC9628824
doi:
Substances chimiques
Amidines
0
Anti-Inflammatory Agents
0
Cytokines
0
Flavones
0
IL1B protein, human
0
Inflammation Mediators
0
Interleukin-1beta
0
Lipopolysaccharides
0
NF-kappa B
0
2,2'-azobis(2-amidinopropane)
7381JDR72F
NOS2 protein, human
EC 1.14.13.39
Nitric Oxide Synthase Type II
EC 1.14.13.39
COMT protein, human
EC 2.1.1.6
Catechol O-Methyltransferase
EC 2.1.1.6
Luteolin
KUX1ZNC9J2
flavone
S2V45N7G3B
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
15-26Références
Drug Metab Dispos. 2017 Mar;45(3):306-315
pubmed: 28031430
Eur J Pharmacol. 2011 Jun 25;660(2-3):454-9
pubmed: 21513709
Diabetes. 2015 May;64(5):1658-69
pubmed: 25524918
J Agric Food Chem. 2002 Jul 31;50(16):4437-44
pubmed: 12137457
J Ethnopharmacol. 2015 Dec 24;176:394-401
pubmed: 26560439
J Nutr. 2006 Mar;136(3):664-71
pubmed: 16484540
Clin Neuropharmacol. 2004 May-Jun;27(3):119-23
pubmed: 15190234
Oxid Med Cell Longev. 2016;2016:5698931
pubmed: 26881031
Nat Rev Mol Cell Biol. 2007 Jan;8(1):49-62
pubmed: 17183360
Free Radic Biol Med. 1990;9(3):199-204
pubmed: 2272527
Proc Natl Acad Sci U S A. 1996 Apr 2;93(7):2774-8
pubmed: 8610116
Int J Hepatol. 2012;2012:853175
pubmed: 22500241
Biochim Biophys Acta. 2005 Dec 30;1754(1-2):253-62
pubmed: 16198162
Pharmacol Rev. 1999 Dec;51(4):593-628
pubmed: 10581325
Am J Clin Nutr. 2004 May;79(5):727-47
pubmed: 15113710
Biochem J. 2014 Feb 1;457(3):401-13
pubmed: 24175631
Pharmacol Rev. 1985 Dec;37(4):333-64
pubmed: 3915090
J Clin Invest. 1998 Jan 15;101(2):455-63
pubmed: 9435318
Mediators Inflamm. 2015;2015:967053
pubmed: 26236111
J Ethnopharmacol. 2018 Oct 28;225:342-358
pubmed: 29801717
Biochem Biophys Res Commun. 2014 Jan 3;443(1):326-32
pubmed: 24321097
Nutr Res Pract. 2013 Dec;7(6):423-9
pubmed: 24353826
Drug Metab Pharmacokinet. 2012;27(1):162-8
pubmed: 21931223
Life Sci. 1988;42(25):2609-14
pubmed: 3386403
Brain Res. 1999 May 29;830(1):10-5
pubmed: 10350554
Lancet. 1998 Sep 19;352(9132):958
pubmed: 9752821
Arch Biochem Biophys. 2006 Nov 15;455(2):197-203
pubmed: 17052680
Int Immunopharmacol. 2009 Aug;9(9):1042-8
pubmed: 19393773
J Ethnopharmacol. 2011 Jan 27;133(2):834-42
pubmed: 21075189
Free Radic Res. 1998 Sep;29(3):247-55
pubmed: 9802556
J Pineal Res. 2012 Nov;53(4):325-34
pubmed: 22537289
Biochem Pharmacol. 2014 Jun 15;89(4):503-14
pubmed: 24704474
Gut. 2003 Jan;52(1):144-51
pubmed: 12477778
J Med Food. 2015 May;18(5):557-64
pubmed: 25692285
J Steroid Biochem Mol Biol. 2002 Nov;82(4-5):343-8
pubmed: 12589941
Science. 1999 May 21;284(5418):1313-8
pubmed: 10334979
Mutat Res. 2003 Sep 9;540(1):1-18
pubmed: 12972054
Int J Mol Sci. 2019 May 10;20(9):
pubmed: 31083440
Arch Neurol. 2000 Feb;57(2):263-7
pubmed: 10681087
Pharmacol Rev. 1975 Jun;27(2):135-206
pubmed: 1103160
J Food Sci. 2017 Feb;82(2):545-552
pubmed: 28071803
Carbohydr Polym. 2017 Oct 15;174:1138-1143
pubmed: 28821038
Curr Med Chem. 2001 Feb;8(2):135-53
pubmed: 11172671
Pain. 2015 Oct;156(10):2072-2083
pubmed: 26207649
Gastroenterology. 2016 Jun;150(8):1704-9
pubmed: 26826669
J Periodontol. 2008 Aug;79(8 Suppl):1527-34
pubmed: 18673007
Mol Cell Biochem. 2004 Oct;265(1-2):107-13
pubmed: 15543940
Free Radic Biol Med. 2016 Jun;95:180-9
pubmed: 27016074
Planta Med. 2008 Nov;74(14):1667-77
pubmed: 18937165
Toxicol Appl Pharmacol. 2014 Dec 1;281(2):230-41
pubmed: 25448439
Food Chem Toxicol. 2013 Sep;59:55-66
pubmed: 23712098
Pol J Pharmacol Pharm. 1988 Sep-Oct;40(5):451-8
pubmed: 3151014
Lancet. 2001 Feb 17;357(9255):539-45
pubmed: 11229684
Drug Metab Dispos. 2011 Apr;39(4):667-74
pubmed: 21209248
Int Immunopharmacol. 2014 Jun;20(2):346-51
pubmed: 24726243
Curr Cancer Drug Targets. 2008 Nov;8(7):634-46
pubmed: 18991571
Food Chem. 2016 Jul 1;202:9-14
pubmed: 26920260
Ann Rheum Dis. 2000 May;59(5):321-5
pubmed: 10784507
Free Radic Biol Med. 2011 May 1;50(9):1081-93
pubmed: 21281711
J Infect Dis. 1999 Apr;179(4):939-44
pubmed: 10068590
J Phys Chem B. 2014 Jan 16;118(2):470-81
pubmed: 24354565
Mol Nutr Food Res. 2013 May;57(5):877-85
pubmed: 23386290
Pharmacol Rev. 2004 Sep;56(3):331-49
pubmed: 15317907
Int J Mol Sci. 2016 Mar 29;17(4):465
pubmed: 27043533
Biomed Pharmacother. 2019 Jan;109:1586-1592
pubmed: 30551412
Sci Rep. 2015 Nov 30;5:17348
pubmed: 26615818
Exp Mol Med. 2009 Sep 30;41(9):629-37
pubmed: 19478557
Mutat Res. 2008 Jul-Aug;659(1-2):15-30
pubmed: 18485806
Biochem Pharmacol. 2006 Nov 30;72(11):1493-505
pubmed: 16723122
Annu Rev Immunol. 2000;18:621-63
pubmed: 10837071
Kidney Blood Press Res. 1999;22(1-2):21-5
pubmed: 10352404
Biomed Pharmacother. 2017 Aug;92:998-1009
pubmed: 28609844
Carbohydr Polym. 2017 Aug 1;169:65-74
pubmed: 28504179
Pharmacol Res. 2010 Apr;61(4):281-7
pubmed: 19892019
J Neurosci. 1998 Mar 1;18(5):1633-41
pubmed: 9464988
J Nutr. 2014 Feb;144(2):202-8
pubmed: 24336456
Molecules. 2013 Jul 09;18(7):8083-94
pubmed: 23839113
Life Sci. 1991;49(10):721-5
pubmed: 1875781