Recent CO
Journal
Nature plants
ISSN: 2055-0278
Titre abrégé: Nat Plants
Pays: England
ID NLM: 101651677
Informations de publication
Date de publication:
06 2021
06 2021
Historique:
received:
11
11
2020
accepted:
04
05
2021
pubmed:
9
6
2021
medline:
17
8
2021
entrez:
8
6
2021
Statut:
ppublish
Résumé
Recent carbon dioxide (CO
Identifiants
pubmed: 34099902
doi: 10.1038/s41477-021-00938-6
pii: 10.1038/s41477-021-00938-6
doi:
Substances chimiques
Sesquiterpenes
0
Toxins, Biological
0
Carbon Dioxide
142M471B3J
parthenin
982DJP4W6A
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
725-729Références
Climate Change: Vital Signs of the Planet (NASA, 2021); https://climate.nasa.gov/vital-signs/carbon-dioxide
Kimball, B. A. Crop responses to elevated CO
doi: 10.1016/j.pbi.2016.03.006
Leakey, A. D. B. et al. Elevated CO
doi: 10.1093/jxb/erp096
Lee, T. D., Barrott, S. H. & Reich, P. B. Photosynthetic responses of 13 grassland species across 11 years of free-air CO
doi: 10.1111/j.1365-2486.2011.02435.x
Ainsworth, E. A. & Long, S. P. 30 years of free-air carbon dioxide enrichment (FACE): what have we learned about future crop productivity and its potential for adaptation? Glob. Change Biol. 27, 27–49 (2021).
doi: 10.1111/gcb.15375
Dusenge, M. E., Duarte, A. G. & Way, D. A. Plant carbon metabolism and climate change: elevated CO
doi: 10.1111/nph.15283
Sardans, J. et al. Ecometabolomics for a better understanding of plant responses and acclimation to abiotic factors linked to global change. Metabolites 10, 239 (2020).
doi: 10.3390/metabo10060239
Poorter, H. & Navas, M.-L. Plant growth and competition at elevated CO
doi: 10.1046/j.1469-8137.2003.00680.x
Parmesan, C. & Hanley, M. E. Plants and climate change: complexities and surprises. Ann. Bot. 116, 849–864 (2015).
doi: 10.1093/aob/mcv169
Ode, P. J., Johnson, S. N. & Moore, B. D. Atmospheric change and induced plant secondary metabolites—are we reshaping the building blocks of multi-trophic interactions? Curr. Opin. Insect Sci. 5, 57–65 (2014).
doi: 10.1016/j.cois.2014.09.006
Robinson, E. A., Ryan, G. D. & Newman, J. A. A meta-analytical review of the effects of elevated CO
doi: 10.1111/j.1469-8137.2012.04074.x
Willeit, M., Ganopolski, A., Calov, R. & Brovkin, V. Mid-Pleistocene transition in glacial cycles explained by declining CO
doi: 10.1126/sciadv.aav7337
Busch, F. A. & Sage, R. F. The sensitivity of photosynthesis to O
doi: 10.1111/nph.14258
Drake, B. G., Gonzàlez-Meler, M. A. & Long, S. P. More efficient plants: a consequence of rising atmospheric CO
doi: 10.1146/annurev.arplant.48.1.609
Ziska, L. H., Sicher, R. C., George, K. & Mohan, J. E. Rising atmospheric carbon dioxide and potential impacts on the growth and toxicity of poison ivy (Toxicodendron radicans). Weed Sci. 55, 288–292 (2007).
doi: 10.1614/WS-06-190
Ziska, L. H. & Caulfield, F. A. Rising CO
doi: 10.1071/PP00032
Ziska, L. H., Panicker, S. & Wojno, H. L. Recent and projected increases in atmospheric carbon dioxide and the potential impacts on growth and alkaloid production in wild poppy (Papaver setigerum DC.). Clim. Change 91, 395 (2008).
doi: 10.1007/s10584-008-9418-9
Del Fabbro, C. & Prati, D. The relative importance of immediate allelopathy and allelopathic legacy in invasive plant species. Basic Appl. Ecol. 16, 28–35 (2015).
doi: 10.1016/j.baae.2014.10.007
Ni, G. et al. Exploring the novel weapons hypothesis with invasive plant species in China. Allelopath. J. 29, 199–214 (2012).
Peñuelas, J. et al. Higher allocation to low cost chemical defenses in Iinvasive species of Hawaii. J. Chem. Ecol. 36, 1255–1270 (2010).
doi: 10.1007/s10886-010-9862-7
Bajwa, A. A., McClay, A. & Adkins, S. W. in Parthenium Weed: Biology, Ecology and Management (eds Adkins, S., Shabbir, A. et al.) 7–39 (CABI, 2019).
Adkins, S. & Shabbir, A. Biology, ecology and management of the invasive parthenium weed (Parthenium hysterophorus L.): management of parthenium weed. Pest Manag. Sci. 70, 1023–1029 (2014).
doi: 10.1002/ps.3708
Niranjan, A. et al. Identification and quantification of heterologous compounds parthenin and organic acids in Parthenium hysterophorus L. using HPLC-PDA-MS-MS. Anal. Lett. 46, 48–59 (2013).
doi: 10.1080/00032719.2012.706849
Belz, R. G., van der Laan, M., Reinhardt, C. F. & Hurle, K. Soil degradation of parthenin—does it contradict the role of allelopathy in the invasive weed Parthenium hysterophorus L.? J. Chem. Ecol. 35, 1137–1150 (2009).
doi: 10.1007/s10886-009-9698-1
Hanif, Z., Adkins, S. W., Prentis, P. J., Navie, S. C. & O’Donnell, C. J. Characterization of the reproductive behaviour and invasive potential of parthenium weed in Australia. Pak. J. Weed Sci. Res. 18, 767–774 (2012).
Bajwa, A. A., Chauhan, B. S. & Adkins, S. Morphological, physiological and biochemical responses of two Australian biotypes of Parthenium hysterophorus to different soil moisture regimes. Environ. Sci. Pollut. Res. 24, 16186–16194 (2017).
doi: 10.1007/s11356-017-9176-1
Nguyen, T., Bajwa, A. A., Navie, S., O’Donnell, C. & Adkins, S. Parthenium weed (Parthenium hysterophorus L.) and climate change: the effect of CO
doi: 10.1007/s11356-017-8737-7
Chadwick, M., Trewin, H., Gawthrop, F. & Wagstaff, C. Sesquiterpenoids lactones: benefits to plants and people. Int. J. Mol. Sci. 14, 12780–12805 (2013).
doi: 10.3390/ijms140612780
Ojija, F., Arnold, S. E. J. & Treydte, A. C. Impacts of alien invasive Parthenium hysterophorus on flower visitation by insects to co-flowering plants. Arthropod Plant Interact. 13, 719–734 (2019).
doi: 10.1007/s11829-019-09701-3
Bajwa, A. A., Chauhan, B. S. & Adkins, S. W. Germination ecology of two Australian biotypes of ragweed parthenium (Parthenium hysterophorus) relates to their invasiveness. Weed Sci. 66, 62–70 (2018).
doi: 10.1017/wsc.2017.61
Bajwa, A. A. et al. Toxic potential and metabolic profiling of two Australian biotypes of the invasive plant parthenium weed (Parthenium hysterophorus L.). Toxins 12, 447 (2020).
doi: 10.3390/toxins12070447
Grime, J. P. Plant Strategies, Vegetation Processes, and Ecosystem Properties (Wiley, 2001).
Grime, J. P. in Plant Evolutionary Biology (eds Gottlieb, L. D. & Jain, S. K.) 371–393 (Springer, 1988).
Craine, J. M. Reconciling plant strategy theories of Grime and Tilman. J. Ecol. 93, 1041–1052 (2005).
doi: 10.1111/j.1365-2745.2005.01043.x
Bae, J. et al. Effect of elevated atmospheric carbon dioxide on the allelopathic potential of common ragweed. J. Ecol. Environ. 43, 21 (2019).
doi: 10.1186/s41610-019-0116-5
Wang, R.-L. et al. Responses of Mikania micrantha, an invasive weed to elevated CO
doi: 10.1007/s10886-010-9843-x
Robinson, J. M. Photosynthetic carbon metabolism in leaves and isolated chloroplasts from spinach plants grown under short and intermediate photosynthetic periods. Plant Physiol. 75, 397–409 (1984).
doi: 10.1104/pp.75.2.397
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).
Filion, M., Dutilleul, P. & Potvin, C. Optimum experimental design for Free-Air Carbon dioxide Enrichment (FACE) studies. Glob. Change Biol. 6, 843–854 (2000).
doi: 10.1046/j.1365-2486.2000.00353.x
Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. https://www.jstatsoft.org/article/view/v067i01 (2015).
Searle, S. R., Speed, F. M. & Milliken, G. A. Population marginal means in the linear model: an alternative to least squares means. Am. Stat. 34, 216–221 (1980).