Evaluation of herbicidal potential of Siderophores produced by Amycolatopsis lurida strain 407.
Actinomycete
Amycolatopsis
Herbicide
Siderophore
Weed
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
31 Oct 2024
31 Oct 2024
Historique:
received:
18
08
2024
accepted:
25
10
2024
medline:
1
11
2024
pubmed:
1
11
2024
entrez:
1
11
2024
Statut:
epublish
Résumé
The urgent need for sustainable agriculture has intensified the search for environmentally friendly alternatives to chemical herbicides. This study investigates the herbicidal potential of siderophores produced by Amycolatopsis lurida strain 407, focusing on its effects on the growth of ryegrass and redroot weeds. Strain 407 exhibited two distinct colony morphologies-red and white-when cultured under varying environmental conditions. The cell-free culture filtrate (CFCF) from both colony types significantly inhibited the growth of ryegrass and redroot. The concentration of siderophore produced in the iron-deficient medium was measured to be 613.4 ppm for 407 red and 388.5 ppm for 407 white, which indicates significant iron chelating activity. This study also showed a direct relationship between the presence of siderophore in plant culture medium and reduced growth. Also, analysis of fractions of the aqueous phase resulting from column chromatography revealed that all fractions from the 407 red reduced ryegrass shoot length by up to 45% and root length by 83-86%, while redroot seedling length decreased by up to 36%. Fractions from 407 white completely inhibited germination or reduced ryegrass root length by up to 94% and redroot seedling length by 52%. Fractions F4 W to F7 W and F2 R to F8 R, which showed iron chelating activity were most effective in reducing plant growth, suggesting that there are metabolites, alone or in company with siderophores, synergistically do herbicidal activity. The innovative application of siderophores as bioherbicide presents a promising environmentally friendly alternative to chemical herbicides.
Identifiants
pubmed: 39482417
doi: 10.1038/s41598-024-77843-3
pii: 10.1038/s41598-024-77843-3
doi:
Substances chimiques
Siderophores
0
Herbicides
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
26212Subventions
Organisme : Agricultural Biotechnology Research Institute of Iran (ABRII)
ID : 3-05-0516-017-971027
Organisme : Agricultural Biotechnology Research Institute of Iran (ABRII)
ID : 3-05-0516-017-971027
Organisme : Agricultural Biotechnology Research Institute of Iran (ABRII)
ID : 3-05-0516-017-971027
Organisme : Agricultural Biotechnology Research Institute of Iran (ABRII)
ID : 3-05-0516-017-971027
Organisme : Agricultural Biotechnology Research Institute of Iran (ABRII)
ID : 3-05-0516-017-971027
Organisme : Agricultural Biotechnology Research Institute of Iran (ABRII)
ID : 3-05-0516-017-971027
Organisme : Agricultural Biotechnology Research Institute of Iran (ABRII)
ID : 3-05-0516-017-971027
Informations de copyright
© 2024. The Author(s).
Références
Alexander, D. B., Zuberer, D. A. Use of chrome azurol S reagents to evaluate siderophore production by rhizospherebacteria. Biol.Fert. Soils. 12, 39–45. https://doi.org/10.1007/BF00369386 (1991).
doi: 10.1007/BF00369386
Alipour Kafi, S. et al. Isolation and identification of Amycolatopsis sp. strain 1119 with potential to improve cucumber fruit yield and induce plant defense responses in commercial greenhouse. Plant. Soil. 468, 125–145 (2021).
doi: 10.1007/s11104-021-05097-3
Aznar, A. & Dellagi, A. New insights into the role of siderophores as triggers of plant immunity: what can we learn from animals? J. Exp. Bot. 66 (11), 3001–3010 (2015).
doi: 10.1093/jxb/erv155
pubmed: 25934986
Blin, K. et al. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res. 49, 29–35 (2021).
doi: 10.1093/nar/gkab335
Bo, A. B. et al. Isolation, identification and characterization of Streptomyces metabolites as a potential bioherbicide. PLoS One. 14 (9), e0222933 (2019).
doi: 10.1371/journal.pone.0222933
pubmed: 31545849
pmcid: 6756554
Cavas, L. & Kirkiz, I. Characterization of siderophores from Escherichia coli strains through genome mining tools: an antiSMASH study. AMB Express. 12 (1), 74 (2022).
doi: 10.1186/s13568-022-01421-x
pubmed: 35704153
pmcid: 9200922
Chaiya, L., Kumla, J., Suwannarach, N., Kiatsiriroat, T. & Lumyong, S. Isolation, characterization, and efficacy of actinobacteria associated with arbuscular mycorrhizal spores in promoting plant growth of chili (Capsicum flutescens L). Microorganisms. 9 (6), 1274 (2021).
doi: 10.3390/microorganisms9061274
pubmed: 34207987
pmcid: 8230694
Cizmas, L. et al. A comparison of two methods for fractionating complex mixtures in preparation for toxicity analysis. J. Toxicol. Environ. Health A. 66, 1351–1370 (2003).
doi: 10.1080/15287390306392
pubmed: 12851116
Crowley, D. E. et al. Mechanisms of iron acquisition from siderophores by microorganisms and plants. Plant. Soil. 130, 179–198 (1991).
doi: 10.1007/BF00011873
Dayan, F. E. & Duke, S. O. Natural compounds as next-generation herbicides. Plant. Physiol. 166 (3), 1090–1105. https://doi.org/10.1104/pp.114.239061 (2014).
doi: 10.1104/pp.114.239061
pubmed: 24784133
pmcid: 4226356
Duke, S. O. Why are there no widely successful microbial bioherbicides for weed management in crops? Pest Manag Sci. https://doi.org/10.1002/ps.7595 (2023).
doi: 10.1002/ps.7595
pubmed: 37271934
Duke, S. O., Pan, Z., Bajsa-Hirschel, J. & Boyette, C. D. The potential future roles of natural compounds and microbial bioherbicides in weed management in crops. Adv. Weed Sci. 40 (spe1), e020210054 (2022).
doi: 10.51694/AdvWeedSci/2022;40:seventy-five003
Fatollahi, P., Ghasemi, M., Yazdian, F. & Sadeghi, A. Ectoine production in bioreactor by Halomonas elongata DSM2581: using MWCNT and Fe-nanoparticle. Biotechnol. Prog. 37 (1), e3073 (2021).
doi: 10.1002/btpr.3073
pubmed: 32862555
Gaines, T. A., Busi, R. & Küpper, A. Can new herbicide discovery allow weed management to outpace resistance evolution? Pest Manag Sci. 77 (7), 3036–3041. https://doi.org/10.1002/ps.6457 (2021).
doi: 10.1002/ps.6457
pubmed: 33942963
Golden, M. M., Heppe, A. C., Zaremba, C. L. & Wuest, W. M. Metal chelation as an antibacterial strategy for Pseudomonas aeruginosa and Acinetobacter baumannii. RSC Chem. Biol. https://doi.org/10.1039/d4cb00175c (2024). PMC11446287.
doi: 10.1039/d4cb00175c
pubmed: 39372678
Gopalakrishnan, S., Srinivas, V., Naresh, N., Alekhya, G. & Sharma, R. Exploiting plant growth-promoting Amycolatopsis sp. for bio-control of charcoal rot of sorghum (Sorghum bicolor L.) caused by Macrophomina phaseolina (Tassi) Goid’, Arch. Phytopathol52pp. 543–559 (Plant Prot., 2019).
Hasan, M., Ahmad-Hamdani, M. S., Rosli, A. M. & Hamdan, H. Bioherbicides: an eco-friendly tool for sustainable weed management. Plants (Basel). 10 (6), 1212 (2021).
pubmed: 34203650
Hemeda, N. A. et al. Maximization of red pigment production from Streptomyces sp. LS1: structure elucidation and application as antimicrobial/antifouling against human pathogens and marine microbes. J. Genet. Eng. Biotechnol. 20 (1), 168 (2022).
doi: 10.1186/s43141-022-00452-y
pubmed: 36542258
pmcid: 9772370
Jung, H. M. et al. Optimization of culture conditions and scale-up to pilot and plant scales for vancomycin production by Amycolatopsis orientalis. Appl. Microbiol. Biotechnol. 77, 789–795 (2007).
doi: 10.1007/s00253-007-1221-4
pubmed: 17938907
Khasheii, B., Mahmoodi, P. & Mohammadzadeh, A. Siderophores: importance in bacterial pathogenesis and applications in medicine and industry. Microbiol. Res. 250, 126790 (2021).
doi: 10.1016/j.micres.2021.126790
pubmed: 34098495
Kisil, O. V., Efimenko, T. A. & Efremenkova, O. V. Looking back to Amycolatopsis: history of the antibiotic discovery and future prospects. Antibiot. (Basel). 10 (10), 1254. https://doi.org/10.3390/antibiotics10101254 (2021).
doi: 10.3390/antibiotics10101254
Kodani, S., Komaki, H., Suzuki, M., Hemmi, H. & Ohnishi-Kameyama, M. ‘Isolation and structure determination of new siderophore albachelin from Amycolatopsis alba’, Biometals, 28(2), pp. 381-9. doi: (2015). https://doi.org/10.1007/s10534-015-9842-z
Kumar, R. et al. ‘A review on emerging water contaminants and the application of sustainable removal technologies’, Case Studies in Chemical and Environmental Engineering, 6, p. 100219. (2022).
Lareen, A., Burton, F. & Schäfer, P. Plant root-microbe communication in shaping root microbiomes. Plant. Mol. Biol. 90, 575–587 (2016).
doi: 10.1007/s11103-015-0417-8
pubmed: 26729479
pmcid: 4819777
Lee, H. B., Kim, C. J., Kim, J. S., Hong, K. S. & Cho, K. Y. A bleaching herbicidal activity of methoxyhygromycin (MHM) produced by an actinomycete strain Streptomyces sp. 8E-12. Lett. Appl. Microbiol. 36 (6), 387–391 (2003).
doi: 10.1046/j.1472-765X.2003.01327.x
pubmed: 12753247
Liunardo, J. J. et al. Isolation, characterisation and description of the roseoflavin producer Streptomyces berlinensis sp. nov. Environ. Microbiol. Rep. 16 (2), e13266 (2024).
doi: 10.1111/1758-2229.13266
pubmed: 38653477
pmcid: 11039241
Majhi, K. C., Karfa, P., Kumar, S. & Madhuri, R. Water as the green solvent in organic synthesis. Mater. Res. Found. 54, 182–201 (2019).
doi: 10.21741/9781644900314-8
Marron, P. G. Status of the biopesticide market and prospects for new bioherbicides. Pest Manag. Sci. https://doi.org/10.1002/ps.7403 (2023).
doi: 10.1002/ps.7403
Niu, M. M. et al. Amycolatopsis nivea sp. nov., isolated from a Yellow River sample. Int. J. Syst. Evol. MicroBiol. 70, 3084–3090 (2020).
doi: 10.1099/ijsem.0.004134
pubmed: 32250240
Orlandi, V. T., Martegani, E., Giaroni, C. & Baj, A. Bacterial pigments: a colorful palette reservoir for biotechnological applications. Biotechnol. Appl. Biochem. 69 (3), 981–1001 (2022).
doi: 10.1002/bab.2170
pubmed: 33870552
Rajwani, R., Ohlemacher, S. I., Zhao, G., Liu, H. B. & Bewley, C. A. Genome-guided discovery of natural products through multiplexed low-coverage whole-genome sequencing of soil actinomycetes on Oxford Nanopore Flongle. mSystems. 6 (6), e0102021 (2021).
doi: 10.1128/mSystems.01020-21
pubmed: 34812649
Roberts, J., Florentine, S., Fernando, W. G. D. & Tennakoon, K. U. Achievements, developments and future challenges in the field of bioherbicides for weed control: a global review. Plants. 11 (17), 2242. https://doi.org/10.3390/plants11172242 (2022).
doi: 10.3390/plants11172242
pubmed: 36079623
pmcid: 9460325
Sadeghi, A. et al. Taxonomic study of a salt-tolerant Streptomyces sp. strain C-2012 and the effect of salt and ectoine on lon expression level. Microbiol. Res. 169, 232–238 (2014).
doi: 10.1016/j.micres.2013.06.010
pubmed: 23916596
Salwan, R. & Sharma, V. Molecular and biotechnological aspects of secondary metabolites in actinobacteria. Microbiol. Res. 231, 126374. https://doi.org/10.1016/j.micres.2019.126374 (2020).
doi: 10.1016/j.micres.2019.126374
pubmed: 31756597
Saygin, H., Ay, H., Guven, K., Cetin, D. & Sahin, N. Streptomyces cahuitamycinicus sp. nov., isolated from desert soil and reclassification of Streptomyces galilaeus as a later heterotypic synonym of Streptomyces bobili. Int. J. Syst. Evol. MicroBiol. 70, 2750–2759 (2020).
doi: 10.1099/ijsem.0.004103
pubmed: 32176603
Schlimpert, S. & Elliot, M. A. The best of both worlds-Streptomyces coelicolor and Streptomyces venezuelae as model species for studying antibiotic production and bacterial multicellular development. J. Bacteriol. 205 (7), e0015323 (2023).
doi: 10.1128/jb.00153-23
pubmed: 37347176
Stackebrandt, E., Kroppenstedt, R. M., Wink, J. & Schumann, P. ‘Reclassification of Amycolatopsis orientalis subsp. lurida Lechevalier et al. 1986 as Amycolatopsis lurida sp. nov., comb. nov.‘, International Journal of Systematic and Evolutionary Microbiology, 54, pp. 267–268. (2004).
Teo, W. F. A., Srisuk, N. & Duangmal, K. Amycolatopsis acidicola sp. nov., isolated from peat swamp forest soil. Int. J. Syst. Evol. MicroBiol. 70, 1547–1554 (2020).
doi: 10.1099/ijsem.0.003933
pubmed: 31851605
Timofeeva, A. M., Galyamova, M. R. & Sedykh, S. E. Bacterial siderophores: classification, biosynthesis, perspectives of use in agriculture. plants (Basel). 11 (22), 3065 (2022).
pubmed: 36432794
TranelP.J. Herbicide resistance in Amaranthus tuberculatus. Pest Manag. Sci. 77 (1), 43–54 (2021).
Waters, B. M., Blevins, D. G. & Eide, D. J. Characterization of FRO1, a pea ferric-chelate reductase involved in root iron acquisition. Plant. Physiol. 129 (1), 85–94 (2002).
doi: 10.1104/pp.010829
pubmed: 12011340
pmcid: 155873
Yang, M. et al. Potential global geographical distribution of Lolium temulentum L. under climate change. Front. Plant. Sci. 13, p1024635 (2022).
doi: 10.3389/fpls.2022.1024635