Development and external validation of prognostic models to predict sudden and pump-failure death in patients with HFrEF from PARADIGM-HF and ATMOSPHERE.
Aged
Aged, 80 and over
Biomarkers
/ blood
Death, Sudden, Cardiac
Female
Heart Failure
/ drug therapy
Humans
Male
Middle Aged
Natriuretic Peptide, Brain
/ blood
Peptide Fragments
/ blood
Predictive Value of Tests
Prognosis
Prospective Studies
Randomized Controlled Trials as Topic
Risk Assessment
Stroke Volume
Device
Heart failure
Model
Pump failure death
Risk
Sudden death
Journal
Clinical research in cardiology : official journal of the German Cardiac Society
ISSN: 1861-0692
Titre abrégé: Clin Res Cardiol
Pays: Germany
ID NLM: 101264123
Informations de publication
Date de publication:
Aug 2021
Aug 2021
Historique:
received:
25
08
2020
accepted:
01
06
2021
pubmed:
9
6
2021
medline:
30
12
2021
entrez:
8
6
2021
Statut:
ppublish
Résumé
Sudden death (SD) and pump failure death (PFD) are the two leading causes of death in patients with heart failure and reduced ejection fraction (HFrEF). Identifying patients at higher risk for mode-specific death would allow better targeting of individual patients for relevant device and other therapies. We developed models in 7156 patients with HFrEF from the Prospective comparison of ARNI with ACEI to Determine Impact on Global Mortality and morbidity in Heart Failure (PARADIGM-HF) trial, using Fine-Gray regressions counting other deaths as competing risks. The derived models were externally validated in the Aliskiren Trial to Minimize Outcomes in Patients with Heart Failure (ATMOSPHERE) trial. NYHA class and NT-proBNP were independent predictors for both modes of death. The SD model additionally included male sex, Asian or Black race, prior CABG or PCI, cancer history, MI history, treatment with LCZ696 vs. enalapril, QRS duration and ECG left ventricular hypertrophy. While LVEF, ischemic etiology, systolic blood pressure, HF duration, ECG bundle branch block, and serum albumin, chloride and creatinine were included in the PFD model. Model discrimination was good for SD and excellent for PFD with Harrell's C of 0.67 and 0.78 after correction for optimism, respectively. The observed and predicted incidences were similar in each quartile of risk scores at 3 years in each model. The performance of both models remained robust in ATMOSPHERE. We developed and validated models which separately predict SD and PFD in patients with HFrEF. These models may help clinicians and patients consider therapies targeted at these modes of death. PARADIGM-HF: ClinicalTrials.gov NCT01035255, ATMOSPHERE: ClinicalTrials.gov NCT00853658.
Sections du résumé
BACKGROUND
BACKGROUND
Sudden death (SD) and pump failure death (PFD) are the two leading causes of death in patients with heart failure and reduced ejection fraction (HFrEF).
OBJECTIVE
OBJECTIVE
Identifying patients at higher risk for mode-specific death would allow better targeting of individual patients for relevant device and other therapies.
METHODS
METHODS
We developed models in 7156 patients with HFrEF from the Prospective comparison of ARNI with ACEI to Determine Impact on Global Mortality and morbidity in Heart Failure (PARADIGM-HF) trial, using Fine-Gray regressions counting other deaths as competing risks. The derived models were externally validated in the Aliskiren Trial to Minimize Outcomes in Patients with Heart Failure (ATMOSPHERE) trial.
RESULTS
RESULTS
NYHA class and NT-proBNP were independent predictors for both modes of death. The SD model additionally included male sex, Asian or Black race, prior CABG or PCI, cancer history, MI history, treatment with LCZ696 vs. enalapril, QRS duration and ECG left ventricular hypertrophy. While LVEF, ischemic etiology, systolic blood pressure, HF duration, ECG bundle branch block, and serum albumin, chloride and creatinine were included in the PFD model. Model discrimination was good for SD and excellent for PFD with Harrell's C of 0.67 and 0.78 after correction for optimism, respectively. The observed and predicted incidences were similar in each quartile of risk scores at 3 years in each model. The performance of both models remained robust in ATMOSPHERE.
CONCLUSION
CONCLUSIONS
We developed and validated models which separately predict SD and PFD in patients with HFrEF. These models may help clinicians and patients consider therapies targeted at these modes of death.
TRIAL REGISTRATION NUMBER
BACKGROUND
PARADIGM-HF: ClinicalTrials.gov NCT01035255, ATMOSPHERE: ClinicalTrials.gov NCT00853658.
Identifiants
pubmed: 34101002
doi: 10.1007/s00392-021-01888-x
pii: 10.1007/s00392-021-01888-x
pmc: PMC8318968
doi:
Substances chimiques
Biomarkers
0
Peptide Fragments
0
pro-brain natriuretic peptide (1-76)
0
Natriuretic Peptide, Brain
114471-18-0
Banques de données
ClinicalTrials.gov
['NCT01035255', 'NCT00853658']
Types de publication
Journal Article
Validation Study
Langues
eng
Sous-ensembles de citation
IM
Pagination
1334-1349Informations de copyright
© 2021. The Author(s).
Références
Mosterd A, Hoes AW (2007) Clinical epidemiology of heart failure. Heart 93(9):1137–1146. https://doi.org/10.1136/hrt.2003.025270
doi: 10.1136/hrt.2003.025270
pubmed: 17699180
pmcid: 1955040
Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JG, Coats AJ, Falk V, Gonzalez-Juanatey JR, Harjola VP, Jankowska EA, Jessup M, Linde C, Nihoyannopoulos P, Parissis JT, Pieske B, Riley JP, Rosano GM, Ruilope LM, Ruschitzka F, Rutten FH, van der Meer P, Authors/Task Force M (2016) ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC)Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J 37(27):2129–2200. https://doi.org/10.1093/eurheartj/ehw128
doi: 10.1093/eurheartj/ehw128
pubmed: 27206819
Bennett M, Parkash R, Nery P, Senechal M, Mondesert B, Birnie D, Sterns LD, Rinne C, Exner D, Philippon F, Campbell D, Cox J, Dorian P, Essebag V, Krahn A, Manlucu J, Molin F, Slawnych M, Talajic M (2017) Canadian cardiovascular society/Canadian heart rhythm society 2016 implantable cardioverter-defibrillator guidelines. Can J Cardiol 33(2):174–188. https://doi.org/10.1016/j.cjca.2016.09.009
doi: 10.1016/j.cjca.2016.09.009
pubmed: 28034580
Levy WC, Mozaffarian D, Linker DT, Sutradhar SC, Anker SD, Cropp AB, Anand I, Maggioni A, Burton P, Sullivan MD, Pitt B, Poole-Wilson PA, Mann DL, Packer M (2006) The seattle heart failure model: prediction of survival in heart failure. Circulation 113(11):1424–1433. https://doi.org/10.1161/CIRCULATIONAHA.105.584102
doi: 10.1161/CIRCULATIONAHA.105.584102
pubmed: 16534009
Pocock SJ, Wang D, Pfeffer MA, Yusuf S, McMurray JJ, Swedberg KB, Ostergren J, Michelson EL, Pieper KS, Granger CB (2006) Predictors of mortality and morbidity in patients with chronic heart failure. Eur Heart J 27(1):65–75. https://doi.org/10.1093/eurheartj/ehi555
doi: 10.1093/eurheartj/ehi555
pubmed: 16219658
O’Connor CM, Whellan DJ, Wojdyla D, Leifer E, Clare RM, Ellis SJ, Fine LJ, Fleg JL, Zannad F, Keteyian SJ, Kitzman DW, Kraus WE, Rendall D, Pina IL, Cooper LS, Fiuzat M, Lee KL (2012) Factors related to morbidity and mortality in patients with chronic heart failure with systolic dysfunction: the HF-ACTION predictive risk score model. Circ Heart Fail 5(1):63–71. https://doi.org/10.1161/CIRCHEARTFAILURE.111.963462
doi: 10.1161/CIRCHEARTFAILURE.111.963462
pubmed: 22114101
Pocock SJ, Ariti CA, McMurray JJ, Maggioni A, Kober L, Squire IB, Swedberg K, Dobson J, Poppe KK, Whalley GA, Doughty RN, Meta-Analysis Global Group in Chronic Heart F (2013) Predicting survival in heart failure: a risk score based on 39 372 patients from 30 studies. Eur Heart J 34(19):1404–1413. https://doi.org/10.1093/eurheartj/ehs337
doi: 10.1093/eurheartj/ehs337
pubmed: 23095984
Vazquez R, Bayes-Genis A, Cygankiewicz I, Pascual-Figal D, Grigorian-Shamagian L, Pavon R, Gonzalez-Juanatey JR, Cubero JM, Pastor L, Ordonez-Llanos J, Cinca J, de Luna AB, Investigators M (2009) The MUSIC Risk score: a simple method for predicting mortality in ambulatory patients with chronic heart failure. Eur Heart J 30(9):1088–1096. https://doi.org/10.1093/eurheartj/ehp032
doi: 10.1093/eurheartj/ehp032
pubmed: 19240065
Wedel H, McMurray JJV, Lindberg M, Wikstrand J, Cleland JGF, Cornel JH, Dunselman P, Hjalmarson A, Kjekshus J, Komajda M, Kuusi T, Vanhaecke J, Waagstein F (2009) Predictors of fatal and non-fatal outcomes in the Controlled Rosuvastatin Multinational Trial in heart failure (CORONA): incremental value of apolipoprotein A-1, high-sensitivity C-reactive peptide and N-terminal pro B-type natriuretic peptide. Eur J Heart Fail 11(3):281–291. https://doi.org/10.1093/eurjhf/hfn046
doi: 10.1093/eurjhf/hfn046
pubmed: 19168876
pmcid: 2645061
Poole-Wilson PA, Uretsky BF, Thygesen K, Cleland JG, Massie BM, Ryden L (2003) Mode of death in heart failure: findings from the ATLAS trial. Heart 89(1):42–48
doi: 10.1136/heart.89.1.42
Kearney MT, Fox KA, Lee AJ, Brooksby WP, Shah AM, Flapan A, Prescott RJ, Andrews R, Batin PD, Eckberg DL, Gall N, Zaman AG, Lindsay HS, Nolan J (2004) Predicting sudden death in patients with mild to moderate chronic heart failure. Heart 90(10):1137–1143. https://doi.org/10.1136/hrt.2003.021733
doi: 10.1136/hrt.2003.021733
pubmed: 15367507
pmcid: 1768484
Mozaffarian D, Anker SD, Anand I, Linker DT, Sullivan MD, Cleland JG, Carson PE, Maggioni AP, Mann DL, Pitt B, Poole-Wilson PA, Levy WC (2007) Prediction of mode of death in heart failure: the Seattle Heart Failure Model. Circulation 116(4):392–398
doi: 10.1161/CIRCULATIONAHA.106.687103
Shadman R, Poole JE, Dardas TF, Mozaffarian D, Cleland JG, Swedberg K, Maggioni AP, Anand IS, Carson PE, Miller AB, Levy WC (2015) A novel method to predict the proportional risk of sudden cardiac death in heart failure: derivation of the Seattle Proportional Risk Model. Heart Rhythm 12(10):2069–2077. https://doi.org/10.1016/j.hrthm.2015.06.039
doi: 10.1016/j.hrthm.2015.06.039
pubmed: 26142301
Shen L, Jhund PS, Petrie MC, Claggett BL, Barlera S, Cleland JGF, Dargie HJ, Granger CB, Kjekshus J, Kober L, Latini R, Maggioni AP, Packer M, Pitt B, Solomon SD, Swedberg K, Tavazzi L, Wikstrand J, Zannad F, Zile MR, McMurray JJV (2017) Declining risk of sudden death in heart failure. N Engl J Med 377(1):41–51. https://doi.org/10.1056/NEJMoa1609758
doi: 10.1056/NEJMoa1609758
pubmed: 28679089
McMurray JJ, Packer M, Desai AS, Gong J, Lefkowitz MP, Rizkala AR, Rouleau JL, Shi VC, Solomon SD, Swedberg K, Zile MR, Investigators P-H, Committees (2014) Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med 371(11):993–1004. https://doi.org/10.1056/NEJMoa1409077
doi: 10.1056/NEJMoa1409077
pubmed: 25176015
McMurray JJ, Krum H, Abraham WT, Dickstein K, Kober LV, Desai AS, Solomon SD, Greenlaw N, Ali MA, Chiang Y, Shao Q, Tarnesby G, Massie BM, Investigators AC (2016) Aliskiren, enalapril, or aliskiren and enalapril in heart failure. N Engl J Med 374(16):1521–1532. https://doi.org/10.1056/NEJMoa1514859
doi: 10.1056/NEJMoa1514859
pubmed: 27043774
Fine JP, Gray RJ (1999) A proportional hazards model for the subdistribution of a competing risk. J Am Stat Assoc 94(446):496–509. https://doi.org/10.1080/01621459.1999.10474144
doi: 10.1080/01621459.1999.10474144
Royston P, Altman DG (2013) External validation of a Cox prognostic model. BMC Med Res Methodol 13:33. https://doi.org/10.1186/1471-2288-13-33
doi: 10.1186/1471-2288-13-33
pubmed: 23496923
pmcid: 3667097
Wolbers M, Blanche P, Koller MT, Witteman JC, Gerds TA (2014) Concordance for prognostic models with competing risks. Biostatistics 15(3):526–539. https://doi.org/10.1093/biostatistics/kxt059
doi: 10.1093/biostatistics/kxt059
pubmed: 24493091
pmcid: 4059461
Lunn M, McNeil D (1995) Applying Cox regression to competing risks. Biometrics 51(2):524–532
doi: 10.2307/2532940
Kober L, Thune JJ, Nielsen JC, Haarbo J, Videbaek L, Korup E, Jensen G, Hildebrandt P, Steffensen FH, Bruun NE, Eiskjaer H, Brandes A, Thogersen AM, Gustafsson F, Egstrup K, Videbaek R, Hassager C, Svendsen JH, Hofsten DE, Torp-Pedersen C, Pehrson S, Investigators D (2016) Defibrillator implantation in patients with nonischemic systolic heart failure. N Engl J Med 375(13):1221–1230. https://doi.org/10.1056/NEJMoa1608029
doi: 10.1056/NEJMoa1608029
pubmed: 27571011
Elming MB, Nielsen JC, Haarbo J, Videbaek L, Korup E, Signorovitch J, Olesen LL, Hildebrandt P, Steffensen FH, Bruun NE, Eiskjaer H, Brandes A, Thogersen AM, Gustafsson F, Egstrup K, Videbaek R, Hassager C, Svendsen JH, Hofsten DE, Torp-Pedersen C, Pehrson S, Kober L, Thune JJ (2017) Age and outcomes of primary prevention implantable cardioverter-defibrillators in patients with nonischemic systolic heart failure. Circulation 136(19):1772–1780. https://doi.org/10.1161/CIRCULATIONAHA.117.028829
doi: 10.1161/CIRCULATIONAHA.117.028829
pubmed: 28877914
McMurray JJ (2016) The ICD in heart failure—time for a rethink? N Engl J Med 375(13):1283–1284. https://doi.org/10.1056/NEJMe1609826
doi: 10.1056/NEJMe1609826
pubmed: 27571386
Looi KL, Lever N, Tang A, Agarwal S (2017) Prophylactic implantable cardioverter defibrillator in heart failure: the growing evidence for all or Primum non nocere for some? Heart Fail Rev 22(3):305–316. https://doi.org/10.1007/s10741-017-9602-y
doi: 10.1007/s10741-017-9602-y
pubmed: 28229272
Masoudi FA, Go AS, Magid DJ, Cassidy-Bushrow AE, Gurwitz JH, Liu TI, Reynolds K, Smith DH, Reifler LM, Glenn KA, Fiocchi F, Goldberg R, Gupta N, Peterson PN, Schuger C, Vidaillet H, Hammill SC, Greenlee RT (2015) Age and sex differences in long-term outcomes following implantable cardioverter-defibrillator placement in contemporary clinical practice: findings from the Cardiovascular Research Network. J Am Heart Assoc 4(6):e002005. https://doi.org/10.1161/JAHA.115.002005
doi: 10.1161/JAHA.115.002005
pubmed: 26037083
pmcid: 4599538
Kirkfeldt RE, Johansen JB, Nohr EA, Jorgensen OD, Nielsen JC (2014) Complications after cardiac implantable electronic device implantations: an analysis of a complete, nationwide cohort in Denmark. Eur Heart J 35(18):1186–1194. https://doi.org/10.1093/eurheartj/eht511
doi: 10.1093/eurheartj/eht511
pubmed: 24347317
Ahmad T, Fiuzat M, Neely B, Neely ML, Pencina MJ, Kraus WE, Zannad F, Whellan DJ, Donahue MP, Pina IL, Adams KF, Kitzman DW, O’Connor CM, Felker GM (2014) Biomarkers of myocardial stress and fibrosis as predictors of mode of death in patients with chronic heart failure. JACC Heart Fail 2(3):260–268. https://doi.org/10.1016/j.jchf.2013.12.004
doi: 10.1016/j.jchf.2013.12.004
pubmed: 24952693
pmcid: 4224312
Bilchick KC, Wang Y, Cheng A, Curtis JP, Dharmarajan K, Stukenborg GJ, Shadman R, Anand I, Lund LH, Dahlstrom U, Sartipy U, Maggioni A, Swedberg K, O’Conner C, Levy WC (2017) Seattle heart failure and proportional risk models predict benefit from implantable cardioverter-defibrillators. J Am Coll Cardiol 69(21):2606–2618. https://doi.org/10.1016/j.jacc.2017.03.568
doi: 10.1016/j.jacc.2017.03.568
pubmed: 28545633
pmcid: 5502749
Levy WC, Li Y, Reed SD, Zile MR, Shadman R, Dardas T, Whellan DJ, Schulman KA, Ellis SJ, Neilson M, O’Connor CM, Investigators H (2017) Does the implantable cardioverter-defibrillator benefit vary with the estimated proportional risk of sudden death in heart failure patients? JACC Clin Electrophysiol 3(3):291–298. https://doi.org/10.1016/j.jacep.2016.09.006
doi: 10.1016/j.jacep.2016.09.006
pubmed: 28553663
pmcid: 5441395
Baldasseroni S, Opasich C, Gorini M, Lucci D, Marchionni N, Marini M, Campana C, Perini G, Deorsola A, Masotti G, Tavazzi L, Maggioni AP, Italian Network on Congestive Heart Failure I (2002) Left bundle-branch block is associated with increased 1-year sudden and total mortality rate in 5517 outpatients with congestive heart failure: a report from the Italian network on congestive heart failure. Am Heart J 143(3):398–405
doi: 10.1067/mhj.2002.121264
Solomon SD, Anavekar N, Skali H, McMurray JJ, Swedberg K, Yusuf S, Granger CB, Michelson EL, Wang D, Pocock S, Pfeffer MA (2005) Influence of ejection fraction on cardiovascular outcomes in a broad spectrum of heart failure patients. Circulation 112(24):3738–3744. https://doi.org/10.1161/CIRCULATIONAHA.105.561423
doi: 10.1161/CIRCULATIONAHA.105.561423
pubmed: 16330684
Horwich TB, Kalantar-Zadeh K, MacLellan RW, Fonarow GC (2008) Albumin levels predict survival in patients with systolic heart failure. Am Heart J 155(5):883–889. https://doi.org/10.1016/j.ahj.2007.11.043
doi: 10.1016/j.ahj.2007.11.043
pubmed: 18440336
Austin PC, Lee DS, Fine JP (2016) Introduction to the analysis of survival data in the presence of competing risks. Circulation 133(6):601–609. https://doi.org/10.1161/CIRCULATIONAHA.115.017719
doi: 10.1161/CIRCULATIONAHA.115.017719
pubmed: 26858290
pmcid: 4741409