Ferrous hemoglobin and hemoglobin-based oxygen carriers acting as a peroxidase can inhibit oxidative damage to endothelial cells caused by hydrogen peroxide.
catalysis
ferrous Hb
ferryl Hb
hemoglobin-based oxygen carriers
peroxidase activity
pseudoperoxidase cycle
Journal
Artificial organs
ISSN: 1525-1594
Titre abrégé: Artif Organs
Pays: United States
ID NLM: 7802778
Informations de publication
Date de publication:
Oct 2021
Oct 2021
Historique:
revised:
17
04
2021
received:
20
03
2021
accepted:
01
06
2021
pubmed:
9
6
2021
medline:
6
1
2022
entrez:
8
6
2021
Statut:
ppublish
Résumé
Oxidative damage caused by the ferryl hemoglobin is one of the major clinical adverse reactions of hemoglobin-based oxygen carriers (HBOCs), while the production of reactive oxygen species in a pathological state can oxidize hemoglobin (HbFe
Substances chimiques
Blood Substitutes
0
Hemoglobins
0
hemoglobin polymer
0
Hydrogen Peroxide
BBX060AN9V
Peroxidases
EC 1.11.1.-
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1229-1239Subventions
Organisme : National Natural Science Foundation
ID : 81973225
Organisme : National Key Research and Development Project of Ministry of Science and Technology of China
ID : 2018YFC1106500
Organisme : Natural Science Foundation of Shaanxi Province
ID : 2020JM-421
Informations de copyright
© 2021 International Center for Artificial Organs and Transplantation and Wiley Periodicals LLC.
Références
Drobin D, Kjellstrom BT, Malm E, Malavalli A, Lohman J, Vandegriff KD, et al. Hemodynamic response and oxygen transport in pigs resuscitated with maleimide-polyethylene glycol-modified hemoglobin (MP4). J Appl Physiol. 2004;96:1843-53.
Silverman TA, Weiskopf RB. Hemoglobin-based oxygen carriers: current status and future directions. Anesthesiology. 2009;111:946-63.
Gaucher C, Menu P. How to evaluate blood substitutes for endothelial cell toxicity. Antioxid Redox Signal. 2008;10:1153-62.
Simoni J, Simoni G, Moeller JF. Intrinsic toxicity of hemoglobin: how to counteract it. Artif Organs. 2009;33:100-9.
D'Agnillo F, Alayash AI. Redox cycling of diaspirin cross-linked hemoglobin induces G2/M arrest and apoptosis in cultured endothelial cells. Blood. 2001;98:3315-23.
Alayash AI. Blood substitutes: why haven't we been more successful? Trends Biotechnol. 2014;32:177-85.
Keipert PE. Hemoglobin-based oxygen carrier (HBOC) development in trauma: previous regulatory challenges, lessons learned, and a path forward. Adv Exp Med Biol. 2017;977:343-50.
Bulow L, Alayash AI. Redox chemistry of hemoglobin-associated disorders. Antioxid Redox Signal. 2017;26:745-7.
Misra HP, Fridovich I. The generation of superoxide radical during the autoxidation of hemoglobin. J Biol Chem. 1972;247:6960-2.
Balagopalakrishna C, Abugo OO, Horsky J, Manoharan PT, Nagababu E, Rifkind JM. Superoxide produced in the heme pocket of the β-chain of hemoglobin reacts with the β-93 cysteine to produce a thiyl radical. Biochemistry. 1998;37:13194-202.
D'Agnillo F, Alayash AI. Site-specific modifications and toxicity of blood substitutes. The case of diaspirin cross-linked hemoglobin. Adv Drug Deliv Rev. 2000;40:199-212.
Alayash AI, Cashon RE. Hemoglobin and free radicals: implication for the development of a safe blood substitute. Mol Med Today. 1995;1:123-7.
Alayash AI. Hemoglobin-based blood substitutes: oxygen carriers, pressor agents, or oxidants? Nat Biotechnol. 1999;17:545-9.
Dei Zotti F, Verdoy R, Brusa D, Lobysheva II, Balligand J-L. Redox regulation of nitrosyl-hemoglobin in human erythrocytes. Redox Biol. 2020;34:101399.
Carlsen CU, Skovgaard IM, Skibsted LH. Pseudoperoxidase activity of myoglobin: kinetics and mechanism of the peroxidase cycle of myoglobin with H2O2 and 2,2-azino-bis(3-ethylbenzthiazoline-6-sulfonate) as substrates. J Agric Food Chem. 2003;51:5815-23.
Halliwell B, Clement MV, Long LH. Hydrogen peroxide in the human body. FEBS Lett. 2000;486:10-3.
Tappel AL. Unsaturated lipide oxidation catalyzed by hematin compounds. J Biol Chem. 1955;217:721-33.
Cooper CE. Radical producing and consuming reactions of hemoglobin: how can we limit toxicity? Artif Organs. 2009;33:110-4.
Alayash AI, Ryan BA, Cashon RE. Peroxynitrite-mediated heme oxidation and protein modification of native and chemically modified hemoglobins. Arch Biochem Biophys. 1998;349:65-73.
Simoni J, Simoni G, Griswold JA, Moeller JF, Tsikouris JP, Khanna A, et al. Role of free hemoglobin in 8-iso prostaglandin F2-alpha synthesis in chronic renal failure and its impact on CD163-Hb scavenger receptor and on coronary artery endothelium. ASAIO J. 2006;52:652-61.
Gonzalez-Sanchez MI, Manjabacas MC, Garcia-Carmona F, Valero E. Mechanism of acetaminophen oxidation by the peroxidase-like activity of methemoglobin. Chem Res Toxicol. 2009;22:1841-50.
Gonzalez-Sanchez MI, Garcia-Carmona F, Macia H, Valero E. Catalase-like activity of human methemoglobin: a kinetic and mechanistic study. Arch Biochem Biophys. 2011;516:10-20.
Li Q, Ma H, Zhang Y, Feng K, Zhu H, Chen C, et al. Study on oxidation stability and oxygen affinity of hemoglobin during storage. Artif Organs. 2018;42:1185-95.
Wu M, Feng K, Li Q, Ma H, Zhu H, Xie Y, et al. Glutaraldehyde-polymerized hemoglobin and tempol (PolyHb-tempol) has superoxide dismutase activity that can attenuate oxidative stress on endothelial cells induced by superoxide anion. Artif Cells Nanomed Biotechnol. 2018;46:47-55.
Sokolov SV, Sepunaru L, Compton RG. Taking cues from nature: hemoglobin catalysed oxygen reduction. Appl Mater Today. 2017;7:82-90.
McLeod LL, Alayash AI. Detection of a ferrylhemoglobin intermediate in an endothelial cell model after hypoxia-reoxygenation. Am J Physiol. 1999;277:H92-H99.
Nagababu E, Rifkind JM. Formation of fluorescent heme degradation products during the oxidation of hemoglobin by hydrogen peroxide. Biochem Biophys Res Comm. 1998;247:592-6.
Alayash AI. Mechanisms of toxicity and modulation of hemoglobin-based oxygen carriers (HBOCs). Shock. 2019;52(1S Suppl 1):41-9.
Buehler PW, Abraham B, Vallelian F, Linnemayr C, Schaer DJ. Haptoglobin preserves the CD163 hemoglobin scavenger pathway by shielding hemoglobin from peroxidative modification. Blood. 2009;113:2578-86.
Kwon SH, Pimentel DR, Remondino A, Sawyer DB, Colucci WS. H2O2 regulates cardiac myocyte phenotype via concentration-dependent activation of distinct kinase pathways. J Mol Cell Cardiol. 2003;35:615-21.