PELP1/SRC-3-dependent regulation of metabolic PFKFB kinases drives therapy resistant ER


Journal

Oncogene
ISSN: 1476-5594
Titre abrégé: Oncogene
Pays: England
ID NLM: 8711562

Informations de publication

Date de publication:
06 2021
Historique:
received: 02 12 2020
accepted: 26 05 2021
revised: 13 05 2021
pubmed: 10 6 2021
medline: 22 12 2021
entrez: 9 6 2021
Statut: ppublish

Résumé

Recurrence of metastatic breast cancer stemming from acquired endocrine and chemotherapy resistance remains a health burden for women with luminal (ER

Identifiants

pubmed: 34103681
doi: 10.1038/s41388-021-01871-w
pii: 10.1038/s41388-021-01871-w
pmc: PMC8238912
mid: NIHMS1709041
doi:

Substances chimiques

Co-Repressor Proteins 0
Estrogens 0
PELP1 protein, human 0
Receptors, Estrogen 0
Transcription Factors 0
Tamoxifen 094ZI81Y45
NCOA3 protein, human EC 2.3.1.48
Nuclear Receptor Coactivator 3 EC 2.3.1.48
Phosphofructokinase-2 EC 2.7.1.105
Paclitaxel P88XT4IS4D

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.

Langues

eng

Sous-ensembles de citation

IM

Pagination

4384-4397

Subventions

Organisme : NCI NIH HHS
ID : U54 CA224076
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA123763
Pays : United States
Organisme : NCATS NIH HHS
ID : UL1 TR000114
Pays : United States
Organisme : NHLBI NIH HHS
ID : T32 HL007741
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA229697
Pays : United States
Organisme : NIA NIH HHS
ID : R01 AG069727
Pays : United States
Organisme : NCI NIH HHS
ID : P30 CA045508
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA248158
Pays : United States
Organisme : NCI NIH HHS
ID : F32 CA210340
Pays : United States
Organisme : NCI NIH HHS
ID : T32 CA009138
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA236948
Pays : United States

Références

Vadlamudi RK, Wang RA, Mazumdar A, Kim Y, Shin J, Sahin A, et al. Molecular cloning and characterization of PELP1, a novel human coregulator of estrogen receptor alpha. J Biol Chem. 2001;276:38272–9.
pubmed: 11481323 doi: 10.1074/jbc.M103783200
Xu J, Liao L, Ning G, Yoshida-Komiya H, Deng C, O’Malley BW. The steroid receptor coactivator SRC-3 (p/CIP/RAC3/AIB1/ACTR/TRAM-1) is required for normal growth, puberty, female reproductive function, and mammary gland development. Proc Natl Acad Sci USA. 2000;97:6379–84.
pubmed: 10823921 pmcid: 18611 doi: 10.1073/pnas.120166297
Habashy HO, Powe DG, Rakha EA, Ball G, Macmillan RD, Green AR, et al. The prognostic significance of PELP1 expression in invasive breast cancer with emphasis on the ER-positive luminal-like subtype. Breast Cancer Res Treat. 2010;120:603–12.
pubmed: 19495959 doi: 10.1007/s10549-009-0419-9
Kumar R, Zhang H, Holm C, Vadlamudi RK, Landberg G, Rayala SK. Extranuclear coactivator signaling confers insensitivity to tamoxifen. Clin Cancer Res. 2009;15:4123–30.
pubmed: 19470742 pmcid: 2756964 doi: 10.1158/1078-0432.CCR-08-2347
Vadlamudi RK, Manavathi B, Balasenthil S, Nair SS, Yang Z, Sahin AA, et al. Functional implications of altered subcellular localization of PELP1 in breast cancer cells. Cancer Res. 2005;65:7724–32.
pubmed: 16140940 pmcid: 1343458 doi: 10.1158/0008-5472.CAN-05-0614
Louie MC, Zou JX, Rabinovich A, Chen HW. ACTR/AIB1 functions as an E2F1 coactivator to promote breast cancer cell proliferation and antiestrogen resistance. Mol Cell Biol. 2004;24:5157–71.
pubmed: 15169882 pmcid: 419858 doi: 10.1128/MCB.24.12.5157-5171.2004
Osborne CK, Bardou V, Hopp TA, Chamness GC, Hilsenbeck SG, Fuqua SA, et al. Role of the estrogen receptor coactivator AIB1 (SRC-3) and HER-2/neu in tamoxifen resistance in breast cancer. J Natl Cancer Inst. 2003;95:353–61.
pubmed: 12618500 doi: 10.1093/jnci/95.5.353
Burandt E, Jens G, Holst F, Janicke F, Muller V, Quaas A, et al. Prognostic relevance of AIB1 (NCoA3) amplification and overexpression in breast cancer. Breast Cancer Res Treat. 2013;137:745–53.
pubmed: 23322234 doi: 10.1007/s10549-013-2406-4
Song X, Chen J, Zhao M, Zhang C, Yu Y, Lonard DM, et al. Development of potent small-molecule inhibitors to drug the undruggable steroid receptor coactivator-3. Proc Natl Acad Sci USA. 2016;113:4970–5.
pubmed: 27084884 pmcid: 4983835 doi: 10.1073/pnas.1604274113
Ravindranathan P, Lee TK, Yang L, Centenera MM, Butler L, Tilley WD, et al. Peptidomimetic targeting of critical androgen receptor-coregulator interactions in prostate cancer. Nat Commun. 2013;4:1923.
pubmed: 23715282 doi: 10.1038/ncomms2912
Raj GV, Sareddy GR, Ma S, Lee TK, Viswanadhapalli S, Li R. et al. Estrogen receptor coregulator binding modulators (ERXs) effectively target estrogen receptor positive human breast cancers. Elife. 2017;6:e26857.
pubmed: 28786813 pmcid: 5548489 doi: 10.7554/eLife.26857
Visvader JE, Lindeman GJ. Cancer stem cells: current status and evolving complexities. Cell Stem Cell. 2012;10:717–28.
pubmed: 22704512 doi: 10.1016/j.stem.2012.05.007
Rohira AD, Yan F, Wang L, Wang J, Zhou S, Lu A, et al. Targeting SRC coactivators blocks the tumor-initiating capacity of cancer stem-like cells. Cancer Res. 2017;77:4293–304.
pubmed: 28611048 pmcid: 5559321 doi: 10.1158/0008-5472.CAN-16-2982
Truong TH, Hu H, Temiz NA, Hagen KM, Girard BJ, Brady NJ, et al. Cancer stem cell phenotypes in ER(
pubmed: 29348189 pmcid: 5882512 doi: 10.1158/1541-7786.MCR-17-0598
Girard BJ, Regan Anderson TM, Welch SL, Nicely J, Seewaldt VL, Ostrander JH. Cytoplasmic PELP1 and ERRgamma protect human mammary epithelial cells from Tam-induced cell death. PLoS ONE. 2015;10:e0121206.
pubmed: 25789479 pmcid: 4366195 doi: 10.1371/journal.pone.0121206
Imamura Y, Mukohara T, Shimono Y, Funakoshi Y, Chayahara N, Toyoda M, et al. Comparison of 2D- and 3D-culture models as drug-testing platforms in breast cancer. Oncol Rep. 2015;33:1837–43.
pubmed: 25634491 doi: 10.3892/or.2015.3767
Tasdemir N, Bossart EA, Li Z, Zhu L, Sikora MJ, Levine KM, et al. Comprehensive phenotypic characterization of human invasive lobular carcinoma cell lines in 2D and 3D cultures. Cancer Res. 2018;78:6209.
pubmed: 30228172 pmcid: 6507416 doi: 10.1158/0008-5472.CAN-18-1416
Girard BJ, Knutson TP, Kuker B, McDowell L, Schwertfeger KL, Ostrander JH. Cytoplasmic localization of proline, glutamic acid, leucine-rich protein 1 (PELP1) induces breast epithelial cell migration through up-regulation of inhibitor of kappaB kinase and inflammatory cross-talk with macrophages. J Biol Chem. 2017;292:339–50.
pubmed: 27881676 doi: 10.1074/jbc.M116.739847
Liu Y, Nenutil R, Appleyard MV, Murray K, Boylan M, Thompson AM, et al. Lack of correlation of stem cell markers in breast cancer stem cells. Br J Cancer. 2014;110:2063–71.
pubmed: 24577057 pmcid: 3992489 doi: 10.1038/bjc.2014.105
Chesney J, Clark J, Klarer AC, Imbert-Fernandez Y, Lane AN, Telang S. Fructose-2,6-bisphosphate synthesis by 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 4 (PFKFB4) is required for the glycolytic response to hypoxia and tumor growth. Oncotarget. 2014;5:6670–86.
pubmed: 25115398 pmcid: 4196155 doi: 10.18632/oncotarget.2213
Kim JW, Dang CV. Cancer’s molecular sweet tooth and the Warburg effect. Cancer Res. 2006;66:8927–30.
pubmed: 16982728 doi: 10.1158/0008-5472.CAN-06-1501
Shi L, Pan H, Liu Z, Xie J, Han W. Roles of PFKFB3 in cancer. Signal Transduct Target Ther. 2017;2:17044.
pubmed: 29263928 pmcid: 5701083 doi: 10.1038/sigtrans.2017.44
Torres-Arzayus MI, Font de Mora J, Yuan J, Vazquez F, Bronson R, Rue M, et al. High tumor incidence and activation of the PI3K/AKT pathway in transgenic mice define AIB1 as an oncogene. Cancer Cell. 2004;6:263–74.
pubmed: 15380517 doi: 10.1016/j.ccr.2004.06.027
Sflomos G, Dormoy V, Metsalu T, Jeitziner R, Battista L, Scabia V, et al. A preclinical model for ERalpha-positive breast cancer points to the epithelial microenvironment as determinant of luminal phenotype and hormone response. Cancer Cell. 2016;29:407–22.
pubmed: 26947176 doi: 10.1016/j.ccell.2016.02.002
Kilgour E, Rothwell DG, Brady G, Dive C. Liquid biopsy-based biomarkers of treatment response and resistance. Cancer Cell. 2020;37:485–95.
pubmed: 32289272 doi: 10.1016/j.ccell.2020.03.012
Regan Anderson TM, Ma S, Perez Kerkvliet C, Peng Y, Helle TM, Krutilina RI, et al. Taxol induces Brk-dependent prosurvival phenotypes in TNBC cells through an AhR/GR/HIF-driven signaling axis. Mol Cancer Res. 2018;16:1761–72.
pubmed: 29991529 doi: 10.1158/1541-7786.MCR-18-0410
Torres-Arzayus MI, Yuan J, DellaGatta JL, Lane H, Kung AL, Brown M. Targeting the AIB1 oncogene through mammalian target of rapamycin inhibition in the mammary gland. Cancer Res. 2006;66:11381–8.
pubmed: 17145884 doi: 10.1158/0008-5472.CAN-06-2316
Guillen KP, Fujita M, Butterfield AJ, Scherer SD, Bailey MH, Chu Z, et al. A breast cancer patient-derived xenograft and organoid platform for drug discovery and precision oncology. bioRxiv. 2021. https://doi.org/10.1101/2021.02.28.433268 .
Moore N, Lyle S. Quiescent, slow-cycling stem cell populations in cancer: a review of the evidence and discussion of significance. J Oncol. 2011;2011:396076.
pubmed: 20936110 doi: 10.1155/2011/396076
Bosco DB, Kenworthy R, Zorio DA, Sang QX. Human mesenchymal stem cells are resistant to Paclitaxel by adopting a non-proliferative fibroblastic state. PLoS ONE. 2015;10:e0128511.
pubmed: 26029917 pmcid: 4452335 doi: 10.1371/journal.pone.0128511
Wang X, Pan L, Mao N, Sun L, Qin X, Yin J. Cell-cycle synchronization reverses Taxol resistance of human ovarian cancer cell lines. Cancer Cell Int. 2013;13:77.
pubmed: 23899403 pmcid: 3751242 doi: 10.1186/1475-2867-13-77
Nair BC, Nair SS, Chakravarty D, Challa R, Manavathi B, Yew PR, et al. Cyclin-dependent kinase-mediated phosphorylation plays a critical role in the oncogenic functions of PELP1. Cancer Res. 2010;70:7166–75.
pubmed: 20807815 pmcid: 3058498 doi: 10.1158/0008-5472.CAN-10-0628
O’Neill S, Porter RK, McNamee N, Martinez VG, O’Driscoll L. 2-Deoxy-D-Glucose inhibits aggressive triple-negative breast cancer cells by targeting glycolysis and the cancer stem cell phenotype. Sci Rep. 2019;9:3788.
pubmed: 30846710 pmcid: 6405919 doi: 10.1038/s41598-019-39789-9
Dong C, Yuan T, Wu Y, Wang Y, Fan TW, Miriyala S, et al. Loss of FBP1 by Snail-mediated repression provides metabolic advantages in basal-like breast cancer. Cancer Cell. 2013;23:316–31.
pubmed: 23453623 pmcid: 3703516 doi: 10.1016/j.ccr.2013.01.022
Vlashi E, Lagadec C, Vergnes L, Reue K, Frohnen P, Chan M, et al. Metabolic differences in breast cancer stem cells and differentiated progeny. Breast Cancer Res Treat. 2014;146:525–34.
pubmed: 25007966 pmcid: 4131557 doi: 10.1007/s10549-014-3051-2
Banerjee A, Arvinrad P, Darley M, Laversin SA, Parker R, Rose-Zerilli MJJ, et al. The effects of restricted glycolysis on stem-cell like characteristics of breast cancer cells. Oncotarget. 2018;9:23274–88.
pubmed: 29796188 pmcid: 5955399 doi: 10.18632/oncotarget.25299
Regan Anderson TM, Ma SH, Raj GV, Cidlowski JA, Helle TM, Knutson TP, et al. Breast tumor kinase (Brk/PTK6) is induced by HIF, glucocorticoid receptor, and PELP1-mediated stress signaling in triple-negative breast cancer. Cancer Res. 2016;76:1653–63.
pubmed: 26825173 doi: 10.1158/0008-5472.CAN-15-2510
Girard BJ, Daniel AR, Lange CA, Ostrander JH. PELP1: a review of PELP1 interactions, signaling, and biology. Mol Cell Endocrinol. 2014;382:642–51.
pubmed: 23933151 doi: 10.1016/j.mce.2013.07.031
Wu RC, Qin J, Yi P, Wong J, Tsai SY, Tsai MJ, et al. Selective phosphorylations of the SRC-3/AIB1 coactivator integrate genomic reponses to multiple cellular signaling pathways. Mol Cell. 2004;15:937–49.
pubmed: 15383283 doi: 10.1016/j.molcel.2004.08.019
Dasgupta S, Rajapakshe K, Zhu B, Nikolai BC, Yi P, Putluri N, et al. Metabolic enzyme PFKFB4 activates transcriptional coactivator SRC-3 to drive breast cancer. Nature. 2018;556:249–54.
pubmed: 29615789 pmcid: 5895503 doi: 10.1038/s41586-018-0018-1
Mondal S, Roy D, Sarkar Bhattacharya S, Jin L, Jung D, Zhang S, et al. Therapeutic targeting of PFKFB3 with a novel glycolytic inhibitor PFK158 promotes lipophagy and chemosensitivity in gynecologic cancers. Int J Cancer. 2019;144:178–89.
pubmed: 30226266 doi: 10.1002/ijc.31868
Telang S, Yaddanapudi K, Grewal J, Redman R, Fu S, Pohlmann P, et al. Abstract B90: PFK-158 is a first-in-human inhibitor of PFKFB3 that selectively suppresses glucose metabolism of cancer cells and inhibits the immunosuppressive Th17 cells and MDSCs in advanced cancer patients. Cancer Res. 2016;76:B90.
doi: 10.1158/1538-7445.PANCA16-B90
Redman R, Pohlmann P, Kurman M, Tapolsky GH, Chesney J. Abstract CT206: PFK-158, first-in-man and first-in-class inhibitor of PFKFB3/ glycolysis: a phase I, dose escalation, multi-center study in patients with advanced solid malignancies. Cancer Res. 2015;75:CT206.
doi: 10.1158/1538-7445.AM2015-CT206
Yao L, Wang L, Cao ZG, Hu X, Shao ZM. High expression of metabolic enzyme PFKFB4 is associated with poor prognosis of operable breast cancer. Cancer Cell Int. 2019;19:165.
pubmed: 31244553 pmcid: 6582605 doi: 10.1186/s12935-019-0882-2
Marotta LL, Almendro V, Marusyk A, Shipitsin M, Schemme J, Walker SR, et al. The JAK2/STAT3 signaling pathway is required for growth of CD44(+)CD24(−) stem cell-like breast cancer cells in human tumors. J Clin Invest. 2011;121:2723–35.
pubmed: 21633165 pmcid: 3223826 doi: 10.1172/JCI44745
Gao R, Li D, Xun J, Zhou W, Li J, Wang J, et al. CD44ICD promotes breast cancer stemness via PFKFB4-mediated glucose metabolism. Theranostics. 2018;8:6248–62.
pubmed: 30613295 pmcid: 6299690 doi: 10.7150/thno.28721
Giordano A, Gao H, Anfossi S, Cohen E, Mego M, Lee BN, et al. Epithelial-mesenchymal transition and stem cell markers in patients with HER2-positive metastatic breast cancer. Mol Cancer Ther. 2012;11:2526–34.
pubmed: 22973057 pmcid: 3500676 doi: 10.1158/1535-7163.MCT-12-0460
Behbod F, Kittrell FS, LaMarca H, Edwards D, Kerbawy S, Heestand JC, et al. An intraductal human-in-mouse transplantation model mimics the subtypes of ductal carcinoma in situ. Breast Cancer Res. 2009;11:R66.
pubmed: 19735549 pmcid: 2790841 doi: 10.1186/bcr2358
Yang Y, Chan JY, Temiz NA, Yee D. Insulin receptor substrate suppression by the tyrphostin NT157 inhibits responses to insulin-like growth factor-I and insulin in breast cancer cells. Horm Cancer. 2018;9:371–82.
pubmed: 30229539 pmcid: 6434949 doi: 10.1007/s12672-018-0343-8
Dwyer AR, Truong TH, Kerkvliet CP, Paul KV, Kabos P, Sartorius CA, et al. Insulin receptor substrate-1 (IRS-1) mediates progesterone receptor-driven stemness and endocrine resistance in oestrogen receptor+ breast cancer. Br J Cancer. 2021;124:217–27.
pubmed: 33144693 doi: 10.1038/s41416-020-01094-y

Auteurs

Thu H Truong (TH)

Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.

Elizabeth A Benner (EA)

Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.

Kyla M Hagen (KM)

Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.

Nuri A Temiz (NA)

Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA.

Carlos Perez Kerkvliet (CP)

Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.

Ying Wang (Y)

Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.

Emilio Cortes-Sanchez (E)

Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA.
Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.

Chieh-Hsiang Yang (CH)

Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA.
Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.

Marygrace C Trousdell (MC)

Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.

Thomas Pengo (T)

University of Minnesota Informatics Institute, University of Minnesota, Minneapolis, MN, USA.

Katrin P Guillen (KP)

Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA.
Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.

Bryan E Welm (BE)

Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA.
Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.
Department of Surgery, University of Utah, Salt Lake City, UT, USA.

Camila O Dos Santos (CO)

Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.

Sucheta Telang (S)

James Graham Brown Cancer Center, Department of Medicine (Division of Medical Oncology and Hematology), University of Louisville, Louisville, KY, USA.

Carol A Lange (CA)

Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA. lange047@umn.edu.
Department of Medicine (Division of Hematology, Oncology, and Transplantation), University of Minnesota, Minneapolis, MN, USA. lange047@umn.edu.
Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA. lange047@umn.edu.

Julie H Ostrander (JH)

Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA. hans1354@umn.edu.
Department of Medicine (Division of Hematology, Oncology, and Transplantation), University of Minnesota, Minneapolis, MN, USA. hans1354@umn.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH