PELP1/SRC-3-dependent regulation of metabolic PFKFB kinases drives therapy resistant ER
Animals
Breast
/ pathology
Breast Neoplasms
/ drug therapy
Cell Line, Tumor
Co-Repressor Proteins
/ genetics
Drug Resistance, Neoplasm
/ genetics
Estrogens
/ genetics
Female
Gene Expression Regulation, Neoplastic
/ genetics
Humans
MCF-7 Cells
Mice
Neoplastic Stem Cells
/ drug effects
Nuclear Receptor Coactivator 3
/ genetics
Paclitaxel
/ pharmacology
Phosphofructokinase-2
/ genetics
Phosphorylation
/ genetics
Receptors, Estrogen
/ genetics
Tamoxifen
/ pharmacology
Transcription Factors
/ genetics
Up-Regulation
/ genetics
Journal
Oncogene
ISSN: 1476-5594
Titre abrégé: Oncogene
Pays: England
ID NLM: 8711562
Informations de publication
Date de publication:
06 2021
06 2021
Historique:
received:
02
12
2020
accepted:
26
05
2021
revised:
13
05
2021
pubmed:
10
6
2021
medline:
22
12
2021
entrez:
9
6
2021
Statut:
ppublish
Résumé
Recurrence of metastatic breast cancer stemming from acquired endocrine and chemotherapy resistance remains a health burden for women with luminal (ER
Identifiants
pubmed: 34103681
doi: 10.1038/s41388-021-01871-w
pii: 10.1038/s41388-021-01871-w
pmc: PMC8238912
mid: NIHMS1709041
doi:
Substances chimiques
Co-Repressor Proteins
0
Estrogens
0
PELP1 protein, human
0
Receptors, Estrogen
0
Transcription Factors
0
Tamoxifen
094ZI81Y45
NCOA3 protein, human
EC 2.3.1.48
Nuclear Receptor Coactivator 3
EC 2.3.1.48
Phosphofructokinase-2
EC 2.7.1.105
Paclitaxel
P88XT4IS4D
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
4384-4397Subventions
Organisme : NCI NIH HHS
ID : U54 CA224076
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA123763
Pays : United States
Organisme : NCATS NIH HHS
ID : UL1 TR000114
Pays : United States
Organisme : NHLBI NIH HHS
ID : T32 HL007741
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA229697
Pays : United States
Organisme : NIA NIH HHS
ID : R01 AG069727
Pays : United States
Organisme : NCI NIH HHS
ID : P30 CA045508
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA248158
Pays : United States
Organisme : NCI NIH HHS
ID : F32 CA210340
Pays : United States
Organisme : NCI NIH HHS
ID : T32 CA009138
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA236948
Pays : United States
Références
Vadlamudi RK, Wang RA, Mazumdar A, Kim Y, Shin J, Sahin A, et al. Molecular cloning and characterization of PELP1, a novel human coregulator of estrogen receptor alpha. J Biol Chem. 2001;276:38272–9.
pubmed: 11481323
doi: 10.1074/jbc.M103783200
Xu J, Liao L, Ning G, Yoshida-Komiya H, Deng C, O’Malley BW. The steroid receptor coactivator SRC-3 (p/CIP/RAC3/AIB1/ACTR/TRAM-1) is required for normal growth, puberty, female reproductive function, and mammary gland development. Proc Natl Acad Sci USA. 2000;97:6379–84.
pubmed: 10823921
pmcid: 18611
doi: 10.1073/pnas.120166297
Habashy HO, Powe DG, Rakha EA, Ball G, Macmillan RD, Green AR, et al. The prognostic significance of PELP1 expression in invasive breast cancer with emphasis on the ER-positive luminal-like subtype. Breast Cancer Res Treat. 2010;120:603–12.
pubmed: 19495959
doi: 10.1007/s10549-009-0419-9
Kumar R, Zhang H, Holm C, Vadlamudi RK, Landberg G, Rayala SK. Extranuclear coactivator signaling confers insensitivity to tamoxifen. Clin Cancer Res. 2009;15:4123–30.
pubmed: 19470742
pmcid: 2756964
doi: 10.1158/1078-0432.CCR-08-2347
Vadlamudi RK, Manavathi B, Balasenthil S, Nair SS, Yang Z, Sahin AA, et al. Functional implications of altered subcellular localization of PELP1 in breast cancer cells. Cancer Res. 2005;65:7724–32.
pubmed: 16140940
pmcid: 1343458
doi: 10.1158/0008-5472.CAN-05-0614
Louie MC, Zou JX, Rabinovich A, Chen HW. ACTR/AIB1 functions as an E2F1 coactivator to promote breast cancer cell proliferation and antiestrogen resistance. Mol Cell Biol. 2004;24:5157–71.
pubmed: 15169882
pmcid: 419858
doi: 10.1128/MCB.24.12.5157-5171.2004
Osborne CK, Bardou V, Hopp TA, Chamness GC, Hilsenbeck SG, Fuqua SA, et al. Role of the estrogen receptor coactivator AIB1 (SRC-3) and HER-2/neu in tamoxifen resistance in breast cancer. J Natl Cancer Inst. 2003;95:353–61.
pubmed: 12618500
doi: 10.1093/jnci/95.5.353
Burandt E, Jens G, Holst F, Janicke F, Muller V, Quaas A, et al. Prognostic relevance of AIB1 (NCoA3) amplification and overexpression in breast cancer. Breast Cancer Res Treat. 2013;137:745–53.
pubmed: 23322234
doi: 10.1007/s10549-013-2406-4
Song X, Chen J, Zhao M, Zhang C, Yu Y, Lonard DM, et al. Development of potent small-molecule inhibitors to drug the undruggable steroid receptor coactivator-3. Proc Natl Acad Sci USA. 2016;113:4970–5.
pubmed: 27084884
pmcid: 4983835
doi: 10.1073/pnas.1604274113
Ravindranathan P, Lee TK, Yang L, Centenera MM, Butler L, Tilley WD, et al. Peptidomimetic targeting of critical androgen receptor-coregulator interactions in prostate cancer. Nat Commun. 2013;4:1923.
pubmed: 23715282
doi: 10.1038/ncomms2912
Raj GV, Sareddy GR, Ma S, Lee TK, Viswanadhapalli S, Li R. et al. Estrogen receptor coregulator binding modulators (ERXs) effectively target estrogen receptor positive human breast cancers. Elife. 2017;6:e26857.
pubmed: 28786813
pmcid: 5548489
doi: 10.7554/eLife.26857
Visvader JE, Lindeman GJ. Cancer stem cells: current status and evolving complexities. Cell Stem Cell. 2012;10:717–28.
pubmed: 22704512
doi: 10.1016/j.stem.2012.05.007
Rohira AD, Yan F, Wang L, Wang J, Zhou S, Lu A, et al. Targeting SRC coactivators blocks the tumor-initiating capacity of cancer stem-like cells. Cancer Res. 2017;77:4293–304.
pubmed: 28611048
pmcid: 5559321
doi: 10.1158/0008-5472.CAN-16-2982
Truong TH, Hu H, Temiz NA, Hagen KM, Girard BJ, Brady NJ, et al. Cancer stem cell phenotypes in ER(
pubmed: 29348189
pmcid: 5882512
doi: 10.1158/1541-7786.MCR-17-0598
Girard BJ, Regan Anderson TM, Welch SL, Nicely J, Seewaldt VL, Ostrander JH. Cytoplasmic PELP1 and ERRgamma protect human mammary epithelial cells from Tam-induced cell death. PLoS ONE. 2015;10:e0121206.
pubmed: 25789479
pmcid: 4366195
doi: 10.1371/journal.pone.0121206
Imamura Y, Mukohara T, Shimono Y, Funakoshi Y, Chayahara N, Toyoda M, et al. Comparison of 2D- and 3D-culture models as drug-testing platforms in breast cancer. Oncol Rep. 2015;33:1837–43.
pubmed: 25634491
doi: 10.3892/or.2015.3767
Tasdemir N, Bossart EA, Li Z, Zhu L, Sikora MJ, Levine KM, et al. Comprehensive phenotypic characterization of human invasive lobular carcinoma cell lines in 2D and 3D cultures. Cancer Res. 2018;78:6209.
pubmed: 30228172
pmcid: 6507416
doi: 10.1158/0008-5472.CAN-18-1416
Girard BJ, Knutson TP, Kuker B, McDowell L, Schwertfeger KL, Ostrander JH. Cytoplasmic localization of proline, glutamic acid, leucine-rich protein 1 (PELP1) induces breast epithelial cell migration through up-regulation of inhibitor of kappaB kinase and inflammatory cross-talk with macrophages. J Biol Chem. 2017;292:339–50.
pubmed: 27881676
doi: 10.1074/jbc.M116.739847
Liu Y, Nenutil R, Appleyard MV, Murray K, Boylan M, Thompson AM, et al. Lack of correlation of stem cell markers in breast cancer stem cells. Br J Cancer. 2014;110:2063–71.
pubmed: 24577057
pmcid: 3992489
doi: 10.1038/bjc.2014.105
Chesney J, Clark J, Klarer AC, Imbert-Fernandez Y, Lane AN, Telang S. Fructose-2,6-bisphosphate synthesis by 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 4 (PFKFB4) is required for the glycolytic response to hypoxia and tumor growth. Oncotarget. 2014;5:6670–86.
pubmed: 25115398
pmcid: 4196155
doi: 10.18632/oncotarget.2213
Kim JW, Dang CV. Cancer’s molecular sweet tooth and the Warburg effect. Cancer Res. 2006;66:8927–30.
pubmed: 16982728
doi: 10.1158/0008-5472.CAN-06-1501
Shi L, Pan H, Liu Z, Xie J, Han W. Roles of PFKFB3 in cancer. Signal Transduct Target Ther. 2017;2:17044.
pubmed: 29263928
pmcid: 5701083
doi: 10.1038/sigtrans.2017.44
Torres-Arzayus MI, Font de Mora J, Yuan J, Vazquez F, Bronson R, Rue M, et al. High tumor incidence and activation of the PI3K/AKT pathway in transgenic mice define AIB1 as an oncogene. Cancer Cell. 2004;6:263–74.
pubmed: 15380517
doi: 10.1016/j.ccr.2004.06.027
Sflomos G, Dormoy V, Metsalu T, Jeitziner R, Battista L, Scabia V, et al. A preclinical model for ERalpha-positive breast cancer points to the epithelial microenvironment as determinant of luminal phenotype and hormone response. Cancer Cell. 2016;29:407–22.
pubmed: 26947176
doi: 10.1016/j.ccell.2016.02.002
Kilgour E, Rothwell DG, Brady G, Dive C. Liquid biopsy-based biomarkers of treatment response and resistance. Cancer Cell. 2020;37:485–95.
pubmed: 32289272
doi: 10.1016/j.ccell.2020.03.012
Regan Anderson TM, Ma S, Perez Kerkvliet C, Peng Y, Helle TM, Krutilina RI, et al. Taxol induces Brk-dependent prosurvival phenotypes in TNBC cells through an AhR/GR/HIF-driven signaling axis. Mol Cancer Res. 2018;16:1761–72.
pubmed: 29991529
doi: 10.1158/1541-7786.MCR-18-0410
Torres-Arzayus MI, Yuan J, DellaGatta JL, Lane H, Kung AL, Brown M. Targeting the AIB1 oncogene through mammalian target of rapamycin inhibition in the mammary gland. Cancer Res. 2006;66:11381–8.
pubmed: 17145884
doi: 10.1158/0008-5472.CAN-06-2316
Guillen KP, Fujita M, Butterfield AJ, Scherer SD, Bailey MH, Chu Z, et al. A breast cancer patient-derived xenograft and organoid platform for drug discovery and precision oncology. bioRxiv. 2021. https://doi.org/10.1101/2021.02.28.433268 .
Moore N, Lyle S. Quiescent, slow-cycling stem cell populations in cancer: a review of the evidence and discussion of significance. J Oncol. 2011;2011:396076.
pubmed: 20936110
doi: 10.1155/2011/396076
Bosco DB, Kenworthy R, Zorio DA, Sang QX. Human mesenchymal stem cells are resistant to Paclitaxel by adopting a non-proliferative fibroblastic state. PLoS ONE. 2015;10:e0128511.
pubmed: 26029917
pmcid: 4452335
doi: 10.1371/journal.pone.0128511
Wang X, Pan L, Mao N, Sun L, Qin X, Yin J. Cell-cycle synchronization reverses Taxol resistance of human ovarian cancer cell lines. Cancer Cell Int. 2013;13:77.
pubmed: 23899403
pmcid: 3751242
doi: 10.1186/1475-2867-13-77
Nair BC, Nair SS, Chakravarty D, Challa R, Manavathi B, Yew PR, et al. Cyclin-dependent kinase-mediated phosphorylation plays a critical role in the oncogenic functions of PELP1. Cancer Res. 2010;70:7166–75.
pubmed: 20807815
pmcid: 3058498
doi: 10.1158/0008-5472.CAN-10-0628
O’Neill S, Porter RK, McNamee N, Martinez VG, O’Driscoll L. 2-Deoxy-D-Glucose inhibits aggressive triple-negative breast cancer cells by targeting glycolysis and the cancer stem cell phenotype. Sci Rep. 2019;9:3788.
pubmed: 30846710
pmcid: 6405919
doi: 10.1038/s41598-019-39789-9
Dong C, Yuan T, Wu Y, Wang Y, Fan TW, Miriyala S, et al. Loss of FBP1 by Snail-mediated repression provides metabolic advantages in basal-like breast cancer. Cancer Cell. 2013;23:316–31.
pubmed: 23453623
pmcid: 3703516
doi: 10.1016/j.ccr.2013.01.022
Vlashi E, Lagadec C, Vergnes L, Reue K, Frohnen P, Chan M, et al. Metabolic differences in breast cancer stem cells and differentiated progeny. Breast Cancer Res Treat. 2014;146:525–34.
pubmed: 25007966
pmcid: 4131557
doi: 10.1007/s10549-014-3051-2
Banerjee A, Arvinrad P, Darley M, Laversin SA, Parker R, Rose-Zerilli MJJ, et al. The effects of restricted glycolysis on stem-cell like characteristics of breast cancer cells. Oncotarget. 2018;9:23274–88.
pubmed: 29796188
pmcid: 5955399
doi: 10.18632/oncotarget.25299
Regan Anderson TM, Ma SH, Raj GV, Cidlowski JA, Helle TM, Knutson TP, et al. Breast tumor kinase (Brk/PTK6) is induced by HIF, glucocorticoid receptor, and PELP1-mediated stress signaling in triple-negative breast cancer. Cancer Res. 2016;76:1653–63.
pubmed: 26825173
doi: 10.1158/0008-5472.CAN-15-2510
Girard BJ, Daniel AR, Lange CA, Ostrander JH. PELP1: a review of PELP1 interactions, signaling, and biology. Mol Cell Endocrinol. 2014;382:642–51.
pubmed: 23933151
doi: 10.1016/j.mce.2013.07.031
Wu RC, Qin J, Yi P, Wong J, Tsai SY, Tsai MJ, et al. Selective phosphorylations of the SRC-3/AIB1 coactivator integrate genomic reponses to multiple cellular signaling pathways. Mol Cell. 2004;15:937–49.
pubmed: 15383283
doi: 10.1016/j.molcel.2004.08.019
Dasgupta S, Rajapakshe K, Zhu B, Nikolai BC, Yi P, Putluri N, et al. Metabolic enzyme PFKFB4 activates transcriptional coactivator SRC-3 to drive breast cancer. Nature. 2018;556:249–54.
pubmed: 29615789
pmcid: 5895503
doi: 10.1038/s41586-018-0018-1
Mondal S, Roy D, Sarkar Bhattacharya S, Jin L, Jung D, Zhang S, et al. Therapeutic targeting of PFKFB3 with a novel glycolytic inhibitor PFK158 promotes lipophagy and chemosensitivity in gynecologic cancers. Int J Cancer. 2019;144:178–89.
pubmed: 30226266
doi: 10.1002/ijc.31868
Telang S, Yaddanapudi K, Grewal J, Redman R, Fu S, Pohlmann P, et al. Abstract B90: PFK-158 is a first-in-human inhibitor of PFKFB3 that selectively suppresses glucose metabolism of cancer cells and inhibits the immunosuppressive Th17 cells and MDSCs in advanced cancer patients. Cancer Res. 2016;76:B90.
doi: 10.1158/1538-7445.PANCA16-B90
Redman R, Pohlmann P, Kurman M, Tapolsky GH, Chesney J. Abstract CT206: PFK-158, first-in-man and first-in-class inhibitor of PFKFB3/ glycolysis: a phase I, dose escalation, multi-center study in patients with advanced solid malignancies. Cancer Res. 2015;75:CT206.
doi: 10.1158/1538-7445.AM2015-CT206
Yao L, Wang L, Cao ZG, Hu X, Shao ZM. High expression of metabolic enzyme PFKFB4 is associated with poor prognosis of operable breast cancer. Cancer Cell Int. 2019;19:165.
pubmed: 31244553
pmcid: 6582605
doi: 10.1186/s12935-019-0882-2
Marotta LL, Almendro V, Marusyk A, Shipitsin M, Schemme J, Walker SR, et al. The JAK2/STAT3 signaling pathway is required for growth of CD44(+)CD24(−) stem cell-like breast cancer cells in human tumors. J Clin Invest. 2011;121:2723–35.
pubmed: 21633165
pmcid: 3223826
doi: 10.1172/JCI44745
Gao R, Li D, Xun J, Zhou W, Li J, Wang J, et al. CD44ICD promotes breast cancer stemness via PFKFB4-mediated glucose metabolism. Theranostics. 2018;8:6248–62.
pubmed: 30613295
pmcid: 6299690
doi: 10.7150/thno.28721
Giordano A, Gao H, Anfossi S, Cohen E, Mego M, Lee BN, et al. Epithelial-mesenchymal transition and stem cell markers in patients with HER2-positive metastatic breast cancer. Mol Cancer Ther. 2012;11:2526–34.
pubmed: 22973057
pmcid: 3500676
doi: 10.1158/1535-7163.MCT-12-0460
Behbod F, Kittrell FS, LaMarca H, Edwards D, Kerbawy S, Heestand JC, et al. An intraductal human-in-mouse transplantation model mimics the subtypes of ductal carcinoma in situ. Breast Cancer Res. 2009;11:R66.
pubmed: 19735549
pmcid: 2790841
doi: 10.1186/bcr2358
Yang Y, Chan JY, Temiz NA, Yee D. Insulin receptor substrate suppression by the tyrphostin NT157 inhibits responses to insulin-like growth factor-I and insulin in breast cancer cells. Horm Cancer. 2018;9:371–82.
pubmed: 30229539
pmcid: 6434949
doi: 10.1007/s12672-018-0343-8
Dwyer AR, Truong TH, Kerkvliet CP, Paul KV, Kabos P, Sartorius CA, et al. Insulin receptor substrate-1 (IRS-1) mediates progesterone receptor-driven stemness and endocrine resistance in oestrogen receptor+ breast cancer. Br J Cancer. 2021;124:217–27.
pubmed: 33144693
doi: 10.1038/s41416-020-01094-y